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Abstract—We study the problem of floor identification for
radiofrequency (RF) signal samples obtained in a crowdsourced
manner, where the signal samples are highly heterogeneous and
most samples lack their floor labels. We propose GRAFICS, a
graph embedding-based floor identification system. GRAFICS
first builds a highly versatile bipartite graph model, having APs
on one side and signal samples on the other. GRAFICS then
learns the low-dimensional embeddings of signal samples via a
novel graph embedding algorithm named E-LINE. GRAFICS
finally clusters the node embeddings along with the embeddings
of a few labeled samples through a proximity-based hierarchical
clustering, which eases the floor identification of every new
sample. We validate the effectiveness of GRAFICS based on
two large-scale datasets that contain RF signal records from 204
buildings in Hangzhou, China, and five buildings in Hong Kong.
Our experiment results show that GRAFICS achieves highly
accurate prediction performance with only a few labeled samples
(96% in both micro- and macro-F scores) and significantly
outperforms several state-of-the-art algorithms (by about 45%
improvement in micro-F score and 53% in macro-F score).

I. INTRODUCTION

While there are plenty of smart city applications based
upon radiofrequency (RF) signals, e.g., WiFi, iBeacon and
UWB, their success largely depends on the availability of floor
information associated with the RF signals. For example, to
facilitate pedestrian navigation in multi-floor indoor environ-
ments, RF signal-based localization systems [1]–[4] need to
estimate the floor number accurately before localizing people
in a two-dimensional plane. Similar situations happen with
indoor unmanned aerial vehicles for scene construction or
building quality monitoring [5], [6]. In geofencing for elderly
care or pandemic control [7], [8], RF signals are leveraged to
assure that people stay on a certain floor due to the prevalence
of the RF signals. Even in robot rescue [9], RF signals can
be used in inferring the floor information when the visual
information is lost.

On the other hand, crowdsourcing has emerged as a prac-
tically viable solution for the large-scale collection of data,
which is crucial for the successful deployment of the above
applications in practice. However, the participatory nature of
crowdsourcing often makes the collected dataset incomplete.
In other words, the crowdsourced RF measurement dataset
contains many measurement samples lacking the exact floor
information, i.e., which floor RF signals were measured. While
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Fig. 1. Statistics of RF signal records on a floor. (a) CDF of the number of
MACs in a signal record; (b) CDF of the fraction of common MACs (overlap
ratio) for a pair of signal records.

the activities such as in-shop contactless shopping [10] and QR
code check-ins [11] enable the collection of ‘floor-labeled’ RF
signals (or labeled RF signals on each floor), their portion is
still relatively small in the entire dataset. To sum up, there is
a need for an accurate floor identification system based on RF
signals, only a few of which have their floor information.

It is, however, non-trivial to build such a floor identification
system due to the following technical challenges. In the crowd-
sourced data collection, different people would contribute
different measurements of RF signals, each of which is in the
form of a vector of the pairs of detected access points (APs),
more precisely, detected medium access control addresses (or
MACs for short), and their corresponding received signal
strength (RSS) values. The dataset is, however, heterogeneous.
The MACs observed in one sample may not appear in another.
The MACs and their corresponding RSS values in the samples
may also vary even when they are measured on the same floor
or the same spot. This can be worse due to environmental
changes (e.g., installation and removal of APs/MACs) and
device heterogeneity.

To illustrate the heterogeneity in the crowdsourced RF
measurement dataset, in Figure 1, we show the statistics of
8,274 signal records collected on a floor of a mall, where
there are 805 distinct MACs. Figure 1(a) presents the CDF of
the number of MACs in each record. Most records contain less
than 40 MACs. It indicates that each record only contains a
small fraction of the MACs detectable on the floor. In addition,
for any pair of signal records, we compute their overlap ratio,
defined as the intersection over the union of MACs in the
records, and plot the CDF of the overlap ratio in Figure 1(b).
Most pairs (78%) overlap less than half. Hence, it would be
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inefficient to use the dataset as is.
In this paper, we present GRAFICS, graph embedding-

based floor identification using crowdsourced RF signals,
which infers the floor number a user is located from an online
measurement of RF signals, along with the crowdsourced RF
measurement dataset. While this crowdsourced dataset can be
leveraged to build a learning model for the problem, it needs to
be judiciously used due to the aforementioned technical chal-
lenges. Since the floor-labeled RF measurement samples are
scarce in the dataset, supervised learning models are deemed
impractical, despite that the supervised learning models have
been used for the floor identification [12]–[14]. It also remains
questionable how to extract useful information from the highly
heterogeneous dataset. Thus, GRAFICS is designed to be a
semi-supervised learning-based system, which is built upon
graph embedding and proximity-based hierarchical clustering.

GRAFICS first constructs a bipartite graph reflecting the
observation in each measurement sample while being adaptive
to the arrivals (or departures) of new (or old) MACs and
arrivals of new measurements. In this graph, we use a node of
one type to represent a MAC and a node of another type to
indicate a measurement record itself. Since each measurement
record has a list of observed MACs and their corresponding
RSS values, we create edges between an ‘RF-record node’ that
represents a record and ‘MAC nodes’ that correspond to the
MACs observed in the record. We then assign weight values to
the edges based on the RSS values. The connectivity structure
in the graph captures the relevance between measurement
records while reflecting the information in each record.

To cope with the heterogeneity in the RF samples,
GRAFICS next learns a low-dimensional vector representation
(or embedding) of each node in the graph. As a byproduct,
GRAFICS prevents the so-called missing value problem in
the first place, which arises when the measurement samples
are directly used in a matrix form [15], [16] (see Section II for
more details), since the node embeddings of equal length are
used on behalf of the measurement samples whose dimensions
can be different. To obtain the node embeddings, we adopt
LINE [17], yet with our own refinements.

While the original LINE algorithm learns node embeddings
based on the relationship between nodes via their common
neighbors, we extend the algorithm to learn the embeddings to
capture the relationship between nodes based on not only their
common ‘direct’ neighbors but also other common ‘multi-hop’
neighbors. Our extension of LINE, named E-LINE, is better
suited for learning the node embeddings of our bipartite graph
for floor classification. For example, two RF measurement
records, even though they are taken on the same floor, may
not share many common MACs but contain the MACs that
rather overlap with the ones in the other records collected on
the same floor. We empirically demonstrate that GRAFICS
(with E-LINE) indeed outperforms its version with the LINE
algorithm for the floor classification problem (see Section VI).

Once the node embeddings are obtained, GRAFICS uses a
proximity-based hierarchical clustering to cluster measurement
samples in the embedding space so that each cluster forms

around each floor-labeled sample, i.e., an RF measurement
sample that comes with its floor information. Thanks to graph
embedding and hierarchical clustering, GRAFICS is able to
work with much fewer floor-labeled samples, when compared
to the prior supervised learning-based solutions [12]–[14] (see
Section VI). Finally, whenever there is an online measurement
of RF signals for inference (i.e., identifying which floor the
measurement is taken), its embedding is first obtained through
the graph embedding, and its nearest cluster is then identified
based on its distance to the centroid of each cluster in the
embedding space. The floor associated with the nearest cluster
eventually becomes the inference result.

Our contributions can be summarized as follows.

• GRAFICS is capable of handling the heterogeneity in the
RF samples. The construction of a bipartite graph incorpo-
rates both the information in each RF measurement record
and the relationship between the records. In addition, the
graph is easily extendable for new RF records. It can also
be adjusted to reflect installation and removal of APs.

• GRAFICS learns the representations of RF samples. Our
novel graph embedding algorithm E-LINE maps each node
in the bipartite graph onto the same low-dimensional vector
space, which enables a better identification of similarities
and differences between the heterogeneous RF samples. E-
LINE also produces better representations or node embed-
dings in improving the performance of floor identification,
as compared to LINE.

• GRAFICS requires a small amount of labeled data. The
node embeddings are used to cluster RF samples (including
few floor-labeled samples) in the embedding space via
the hierarchical clustering. This semi-supervised learning
makes GRAFICS require much fewer floor-labeled samples
than the supervised ones. This efficiency stems from the
enhanced vector representations of the RF samples.

• GRAFICS significantly outperforms state-of-the-art meth-
ods. We implement GRAFICS and evaluate its perfor-
mance based on Microsoft’s Kaggle open dataset, which
includes crowdsourced RF samples obtained in 204 multi-
floor buildings in Hangzhou, China, and a newly collected
dataset, which has RF samples obtained in 5 buildings
in Hong Kong. Experimental results show that GRAFICS
achieves higher than 96% in micro-F and macro-F scores
across all buildings with only few labels per floor (around
4 out of 1000 on average). Compared with state-of-the-
art methods, GRAFICS also outperforms around 45% in
micro-F score and 53% in macro-F score.

The rest of this paper is organized as follows. We re-
view related work in Section II and provide an overview
of GRAFICS in Section III. In Section IV, we explain the
details of bipartite graph modeling, graph embedding, and
hierarchical clustering in GRAFICS. We then elaborate on
how the online inference is done in GRAFICS in Section V.
Extensive experimental results are presented in Section VI. We
conclude in Section VII.



II. RELATED WORK

Floor classification with different sensors: Different sensors
from smartphones have been leveraged for the floor classifi-
cation problem [18]–[20]. A heuristic thresholding method is
used with barometer readings [21] to detect floor transitions.
However, such a threshold is difficult to set in practice since
different barometer models may have different sensitivity
levels. Thus, in [22], the barometer readings are fused with
WiFi and inertial measurement unit (IMU) sensors using
Kalman filter to infer floor information. Magnetometers from
smartphones are also explored in [23] with IMU readings for
floor classification. Despite their satisfactory performance, the
collection of such sensor readings introduces high overhead
for data storage, data transmission, and battery consumption.
Furthermore, users are supposed to follow carefully designed
trajectories as ground truth [24] to collect sensor data such
that they can be well ‘labeled’. In contrast, GRAFICS is
lightweight and based only on crowdsourced RF measurements
to achieve accurate and efficient detection of floor numbers.
The need for massive labeled data: Several machine learning
algorithms have been utilized for floor classification [12],
[13], [25]–[28]. For example, a support vector machine-based
method is proposed in [12], but it needs to train support
vectors for the classification of every pair of floors, which is
inconvenient in practice. To address this problem, a recurrent
neural network approach is introduced in [13]. It works well
when data has a temporal relationship, which implies that one
would need to obtain a group of RF samples collected from
the same trajectory. However, crowdsourced RF samples are
usually sporadic and contributed by many different users. Fur-
thermore, all these machine learning-based solutions require a
large amount of labeled data in training their classification
model. In contrast, GRAFICS works with only few labeled
samples.
Leveraging the locations of APs: There are also a few prior
studies [25], [27], [29] that leverage the knowledge of APs’
locations for floor classification. For instance, ViFi [29] learns
the parameters of a signal propagation model from the RSS
measurements to generate virtual reference points and then
predicts floor labels for new signals with a weighted k-nearest
neighbors algorithm. StoryTeller [27] converts RF signals to
images based on APs with strong signal strengths and then
trains a convolutional neural network (CNN) model for floor
classification. They both require the APs’ locations, which are,
however, usually unavailable when the RF measurement data
is collected in a crowdsourced manner. Thus, GRAFICS is
designed to be independent of the AP locations and only uses
the signal readings collected from different APs to infer floor
information accurately.
Assuming fixed-length RF signal vectors: When using
RF signals for floor classification, the state-of-the-art sys-
tems [14]–[16], [30] first group all the RF signal data together
in a matrix form. Each RF signal measurement record contains
a set of RSS values from surrounding APs that are represented
by their MAC addresses, so the RSS-value set forms a row of

MAC! MAC"
MAC#𝑣!
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Fig. 2. Missing value problem when representing RF signal data in a matrix.

the matrix. In other words, each sensed MAC address forms a
column where the RSS value associated with the MAC address
in each record is the value of an entry. Once the matrix is
constructed, they transform each row in the matrix to a low-
dimensional vector space via a CNN or an autoencoder, and
build a classification model for floor identification.

In the matrix representation, however, there is a so-called
missing value problem in that some entries in the matrix
lack RSS values since the RF samples are of variable length
(i.e., the number of detected MAC addresses can be different
per sample), as shown in Figure 2. The missing entries are
generally filled with extremely small values to indicate non-
availability. Nonetheless, some missing values may be due to
the limited scanning capability of low-end devices. The entries
with the extremely small values could also be misinterpreted
as the presence of their corresponding APs, albeit with weak
signals, when used for building a classifier. Thus, such ad-
hoc data imputation could potentially lead to erroneous feature
extraction, resulting in unsatisfactory floor classification and
learning inefficiency. In contrast, GRAFICS models RF signal
records using a bipartite graph, which naturally avoids the
missing value problem.

III. GRAFICS: DESIGN

We first discuss the technical challenges that are considered
and addressed in designing our floor identification system
GRAFICS. We then provide a system overview before we go
into the details in the subsequent sections.

A. Technical Challenges and Considerations

Dynamic RF environments: Crowdsourced RF signal sam-
ples consist of scattered, noisy RSS values and are of vari-
able sizes. For example, the signal samples collected at two
different places yet on the same floor may have no overlap
with each other because of the limited coverage of APs. Even
on the same spot, the recorded RSS values may differ and
detected APs may vary due to environmental changes and
device heterogeneity. The RSS records could also vary over
time, and APs could be added and removed over time. To
address these issues, we propose a novel representation of the
scattered, noisy RF signal samples based on a bipartite graph,
which allows us to uncover the hidden relationship among
the RF samples. We also propose E-LINE that improves on
LINE in a way that is better suitable for our bipartite graph
to map each node (an RF sample) in the graph into a low-
dimensional vector space. Since the RF samples (of variable
length) are now represented in the same embedding space,
their similarities and differences can be easily measured via
the distances among the samples in the embedding space.



Bipartite Graph 
Construction (Sec. IV-A)

Cluster Training
(Sec. IV-C)

𝐹1

𝐹2

𝐹3

MACs Records

E-LINE
(Sec. IV-B)

mac!: rss!
⋮

mac": rss"
𝐹3

mac#: rss#
⋮

mac$: rss$

⋮

Extended Connection

(a) Offline Training
…

Embedding Prediction
(Sec. V-A)

Floor Prediction
(Sec. V-B)

Target𝐹1

𝐹2

𝐹3

…

mac!: rss!
⋮

mac": rss"

(b) Online Inference

Fig. 3. A system overview of GRAFICS.

Scarce floor-labeled data: Crowdsourcing enables a large-
scale collection of RF signal data but does not ensure the
collection of their contextual information such as which floor
they were obtained. This floor information is the label in-
formation in the floor identification problem. While we can
still collect the floor-labeled RF samples from the events such
as in-shop contactless shopping [10] and QR code check-
ins [11], their portion in the dataset is largely limited. In
other words, not every RF sample is associated with its floor
label, and only a very small portion of the RF data has the
floor labels. Thus, after obtaining the embeddings of the RF
samples, we do not build any supervised learning model for
floor classification, which often requires a considerable amount
of labeled data. Instead, thanks to the ease of computing the
distances among the samples via their embeddings, we are able
to build an effective semi-supervised learning model with only
a tiny fraction of labeled data, which is done via our proposed
proximity-based hierarchical clustering.

B. System Overview

Figure 3 illustrates an end-to-end workflow of GRAFICS,
which ranges from offline training to online inference. In
the offline training phase, GRAFICS first models RF signal
measurement samples using a bipartite graph, inspired by their
structure where each RF signal sample consists of sensed
MACs with corresponding RSS values (Section IV-A). In this
bipartite graph, the RF signal samples and sensed MACs are
represented by two different types of nodes, respectively, and
they are connected by edges weighted by the RSS values from
the sensed MACs (or APs). As a result, changes in the MACs
or RF signal samples can be easily captured by adding or
removing the nodes or edges in the graph. Then, the bipartite
graph is processed with our proposed embedding algorithm
E-LINE (Section IV-B) to learn low dimensional coordinates,
i.e., a latent representation or embedding for each node in
an unsupervised manner. Finally, the learned representations,
together with the small set of labels on each floor, are
used to build a simple yet effective floor classifier via our
proximity-based hierarchical clustering (Section IV-C). During
this process, all unlabeled crowdsourced signal samples form
clusters, each of which also contains a floor-labeled sample,
so their labels are virtually predicted as the label of the floor-
labeled sample in the cluster that they belong to.

On the other hand, in the online inference phase, for each
newly collected RF sample, GRAFICS first generates its

embedding through the graph embedding (Section V-A) and
then predicts its label (or infer which floor the new sample is
taken) as the label (or floor) of the cluster that is closest in
the embedding space (Section V-B).

IV. GRAFICS: OFFLINE TRAINING

The offline training of GRAFICS is done via the following
three steps: (i) constructing a bipartite graph based on the
RF signal samples, (ii) learning node embeddings from the
graph by our E-LINE algorithm, and (iii) building a simple
yet effective classification model via our proximity-based
hierarchical clustering method.

A. Bipartite Graph Construction

Conventionally, RF signal data are represented in a matrix
form (or vectors of equal length) for indoor localization and
floor identification applications [14]–[16], [30]–[32]. Such a
matrix representation, however, often suffers from the missing
value problem, as explained in Section II. Thus, we propose
to model the variable-length RF signal records as a weighted
bipartite graph, where the measured signal information is
preserved without having the missing value problem. In the
graph, each RF signal record is a node of one type and the
sensed MAC addresses in each record are nodes of the other
type. Edges indicate the presence of sensed MAC addresses in
each RF record, and their edge weights are determined based
on the RSS values from the corresponding APs.

Let G = (M,V, E) be a weighted bipartite graph. V is a
set of nodes to represent the RF signal records, and M is a
set of nodes for the sensed MAC addresses. Also, E is a set
of edges, where emv ∈ E denotes the edge between m ∈ M
and v ∈ V . Note that the edge emv indicates the presence of
MAC address m in record v. For each record v, let RSSmv be
the RSS value from an AP whose MAC address is m, which
appears in the record. We then associate each edge emv with
weight cmv , which is defined as

cmv := f(RSSmv), (1)

where f is a function of RSSmv with f(RSSmv)> 0 for all
RSSmv . Note that two nodes m and v are connected as long
as there exists a measured value of RSSmv from MAC m in
record v, with the edge weight being cmv . Figure 4 illustrates
an example where signal record v1 is connected to MACs 1–2,
and v2 is connected to MACs 2–3.
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Fig. 4. Example of two signal records with three sensed MACs.

We use the following weight function for graph G:

f(RSSmv) := RSSmv + α, (2)

with some constant α that satisfies α>max{|RSSmv|,∀m, v}.
In Section VI-D, we empirically show that it achieves the
best performance, implying that a constant offset preserves
the relationships among nodes better than other schemes.

B. E-LINE

From the bipartite graph G, we next obtain vector represen-
tations or embeddings of nodes to be used to build a classifier
for floor identification. To this end, we propose a novel graph
embedding algorithm E-LINE, which improves on LINE [17]
in learning better vector representations of equal length from
the bipartite graph G. Among others, LINE is a widely adopted
graph embedding algorithm in the literature [33]. Note that
graph embedding here is representation learning when each
node in a graph is not associated with a set of features (or
attributes), and the embedding vectors are learned mainly
based on the underlying connectivity structure of a given
graph, unlike graph neural networks.

Before going into the details of E-LINE, we below briefly
explain LINE since E-LINE is an extension of LINE. LINE
considers the following two factors to learn node embeddings
from a given graph: (i) whether two nodes are connected, and
(ii) whether two nodes share common neighbors. These two
factors lead to two different notions of ‘proximity’, which are
first-order proximity and second-order proximity, respectively.
We observe that the first-order proximity is no longer useful
when LINE is used for a bipartite graph. The edges only
exist between the nodes of different types, but we are more
interested in the relationships among the nodes of the same
type. Our experiment also confirms that LINE performs better
with the second-order proximity only than the one using both
proximities in learning node embeddings from the bipartite
graph for the floor identification problem. Thus, we below
focus on the second-order proximity of LINE and explain how
it is extended in E-LINE.

The second-order proximity in LINE is defined for a di-
rected graph. Note that any undirected graph can be interpreted
as a directed graph by replacing each (undirected) edge with
two directed edges having the opposite directions. The weight
for each undirected edge is also used as the weights for both
directed edges, i.e., cij = cji. The rationale behind the second-
order proximity is to make nodes i and j close to each other in
the embedding space, if they share many common neighbors,
i.e., |N(i) ∩N(j)| is large, where N(i) and N(j) denote the
sets of the neighbors of i and j, respectively.

To be precise, there are two different embeddings for each
node i. One is ‘ego’ embedding, defined as ui, to represent
the node itself, and it is the representation of each node to use
in building a floor classifier. The other is ‘context’ embedding,
defined as u′i, to represent the relationship between node
i and other nodes, or encode its (one-hop) neighborhood
information. The second-order proximity between i and j is
determined by the similarity between their context embeddings
u′i and u′j . If two nodes share many common neighbors, their
context embeddings are similar to each other, so are their ego
embeddings. Here the embedding dimensions are the same and
determined as a hyperparameter.

The second-order proximity is defined based on the condi-
tional probability of the context of j determined given node i,
which is given by

Pr(u′j |ui) :=
exp(u′j · ui)∑

l∈M∪V exp(u
′
l · ui)

, (3)

where a ·b is the inner product between a and b. Its empirical
probability is also defined as

P̂r(u′j |ui) :=
cij∑

l∈N(i) cil
, (4)

which characterizes the ‘influence’ from node i to the context
of its neighbor j. Then, the ego and context embeddings
are determined so that the following objective function is
minimized:

O1 =
∑

i∈M∪V
λi

∑
j∈N(i)

P̂r(u′j |ui) log
P̂r(u′j |ui)

Pr(u′j |ui)
,

which is defined based on the Kullback–Leibler divergence
of Pr(u′j |ui) from P̂r(u′j |ui) with the convention 0 log 0=0.
After omitting some constant terms, the objective function can
be written as

O1 = −
∑

i∈M∪V

∑
j∈N(i)

λi
cij∑

l∈N(i) cil
log Pr(u′j |ui).

By setting λi :=
∑

l∈N(i) cil, we have

O1 = −
∑

i∈M∪V

∑
j∈N(i)

cij log Pr(u
′
j |ui). (5)

We see that the second-order proximity mainly captures
the closeness between nodes in the (ego) embedding space
via the similarity between their context embeddings. Since
each context embedding encodes the one-hop neighborhood
information of each node, their similarity indicates how many
one-hop neighbors they commonly share. However, it is not
able to capture the relevance between nodes when they do
not share many neighbors in their one-hop neighborhood but
in their local yet few-hop neighborhood. In other words, the
context embeddings u′i and u′j of nodes i and j should also be
similar to each other if they are reachable from each other in a
few hops via multiple different local paths. This is particularly
important in our floor identification problem. For example, two
RF measurement samples taken on the same floor may not
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share many common MACs but contain the MACs that rather
overlap with the ones in the other samples collected on the
same floor. While the second-order proximity cannot capture
such a case, their context embeddings should be similar to
each other so that they can be mapped closely on the (ego)
embedding space.

To achieve better node embeddings, we below introduce a
novel extension of LINE, or E-LINE. Similar to (3), we define
the conditional probability of the ego (node) j influenced given
the context of i, which is given by

Pr(uj |u′i) =
exp(uj · u′i)∑

l∈M∪V exp(ul · u′i)
. (6)

Its empirical distribution is also defined as

P̂r(uj |u′i) =
cij∑

l∈N(i) cil
, (7)

which corresponds to (4). Following the same line of argument
as above, we can construct the following objective function:

O2 = −
∑

i∈M∪V

∑
j∈N(i)

cij log Pr(uj |u′i). (8)

Finally, we learn the ego and context embeddings by minimiz-
ing the following objective function, which is a combination
of the ones in (5) and (8):

O3 = O1 +O2

= −
∑

i∈M∪V

∑
j∈N(i)

cij
(
log Pr(u′j |ui)+log Pr(uj |u′i)

)
. (9)

To summarize, E-LINE enhances LINE in such a way that
nodes are mapped into the embedding space based on the
similarity between their context embeddings that encode their
local neighborhood information, which is now more than just
their one-hop neighborhood information. See Figure 5 for
illustration, where nodes i and k would also be close to each
other in the embedding space.

On the other hand, minimizing the objective function in (9)
is computationally expensive in practice since the normalizing
constants of Pr(u′j |ui) and Pr(uj |u′i) involve the summations
over the entire node setM∪V . Thus, instead of the objective
function in (9), we consider its relevant objective function,
which is based on the widely used ‘negative sampling’ method
(see [17], [33], [34] and references therein) and is com-
putationally much easier to evaluate. Specifically, we use

the following objective function to minimize in learning the
embeddings of each node:

LG :=−
∑

i∈M∪V

∑
j∈N(i)

cij

(
log
[
σ(u′j · ui)σ(uj · u′i)

]
+KEz∼Pr(z) [log (σ(−u′z · ui)σ(−uz · u′i))]

)
, (10)

where σ(x) := 1/(1 + exp(−x)). The second term in each
summand is based on K ‘negative’ samples. The expectation
E is with respect to node z that is randomly drawn according
to a probability distribution Pr(z), z∈M∪V , and is computed
via the Monte Carlo approximation with K negative samples.
As widely used in the literature [17], [33], [34], we choose
Pr(z) ∝ d3/4z , where dz is the degree of node z.

Recall that the goal here is to make nodes close to each other
in the (ego) embedding space if they share many common
local neighbors. The rationale behind minimizing the objective
function in (10) is as follows. On one hand, the first term in
each summand makes the ego (or context) embedding of i and
the context (or ego) embedding of j similar to each other for
every pair of neighboring nodes i and j. We can also see that
due to the presence of the context embedding of each node, the
ego embeddings of nodes that are in their local neighborhood
would eventually be similar to each other. On the other hand,
the second term in each summand, which is based on K
negative samples, makes the ego (or context) embedding of
i and the context (or ego) embedding of z dissimilar to each
other. Here node z is most likely to be a node outside the local
neighborhood of i. Therefore, the ego embeddings of locally
closed nodes would be similar to each other, while the ones
of distant nodes would be dissimilar to each other.

Figure 6 visualizes how effective E-LINE maps RF signal
samples collected in a three-story campus building into the
(ego) embedding space, as compared to multidimensional scal-
ing (MDS) and autoencoder used with a matrix representation
of the RF signal samples. Here all the samples are ‘floor-
labeled’, and we use a visualization tool called t-SNE [35].
As shown in Figure 6(a), E-LINE makes the embeddings of
the signals collected on the same floor naturally form a cluster
while separating different clusters apart. However, as can be
seen from Figure 6(b)–(c), MDS [36] and autoencoder [37] fail
to cluster together the same-floor signals. Such unsatisfactory
performance is expected to stem from the aforementioned
missing value problem when the RF signal samples are rep-
resented in a matrix form.

C. Cluster Training

Given the learned ego embeddings of RF signal samples,
only a few of which come with floor labels (which floor they
were collected), our goal here is to build a simple yet effective
classification model. To this end, we use a proximity-based
hierarchical clustering, which works as follows. Initially, each
embedding is treated as an individual cluster. Note that only
a few embeddings are for floor-labeled samples, while most
embeddings correspond to unlabeled samples. We then repeat-
edly merge two clusters that are closest to each other such that
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the resulting cluster has the embedding of at most one floor-
labeled sample. In other words, two clusters that both have
floor-labeled samples cannot be merged into a cluster. This
clustering process is repeated until every embedding is merged
into one cluster, and each cluster contains the embedding of
exactly one floor-labeled sample, which is used as the floor
label of the cluster. Here, to compute the distance between two
clusters, we use the following distance measure. For clusters
i and j, let Ψi and Ψj be the sets of the embeddings in their
clusters, respectively. The distance between clusters i and j is
defined as

d(Ψi,Ψj) :=
1

|Ψi||Ψj |
∑

ui∈Ψi

∑
uj∈Ψj

‖ui − uj‖2, (11)

where ‖ · ‖2 represents the `2 norm.
Figure 7 visualizes how the embeddings of 48 signal

samples obtained on three floors are eventually merged into
three clusters, each with the embedding of one floor-labeled
sample. While this example assumes that there is only one
labeled sample from each floor, the samples collected on each
floor may possess several floor-labeled samples. Thus, multiple
clusters can be associated with one floor. In addition, we pro-
vide a visualization of the clustering process in Figure 8, when
there are four labeled samples each floor along with unlabeled
samples obtained in the three-story building. As shown in
Figure 8, all unlabeled samples are eventually merged into the
clusters with labeled samples in the embedding space, which
are well separated. Here the labeled samples are colored with
the same color for each floor, and the unlabeled samples are
colored with the color of the merged cluster.

V. GRAFICS: ONLINE INFERENCE

We turn our attention to the online inference of GRAFICS.
For a new RF signal sample, we explain how to obtain its ego
and context embeddings. We then move on to the prediction

of its floor label based on its ego embedding and the clusters
obtained via the proximity-based hierarchical clustering.

A. Embedding Prediction

When a new RF signal sample becomes available, it is added
into the bipartite graph G as a new ‘RF-record’ node, say r,
and its edges are created with the ‘MAC’ nodes that appear in
the record. Some MAC nodes may also be newly added into
the graph, if they are new ones. The edge weights are then
determined based on the weight function in (1) and (2) with
the recorded RSS values.1

Once the new node r is added into the graph, its embeddings
ur and u′r are learned to minimize the objective function in
(9) while the embeddings of the other nodes that have been
in the graph remain fixed. This way, the new node r is placed
near its local neighborhood in the (ego) embedding space.
Similarly for newly added MAC nodes. It is worth noting that
minimizing the objective function in (9) with respect to ur and
u′r is computationally inexpensive and can be done in real-time
since the other (previously learned) embeddings remain fixed.

B. Floor Prediction

Given the ego embedding ur of node/sample r, we calculate
its distances with the centroids of all the clusters. We then
find its predicted floor label as the label of the cluster that is
closest to ur, which indicates on what floor the sample r was
collected. Specifically, the centroid ψi of cluster i is defined
as

ψi :=
1

|Ψi|
∑

ui∈Ψi

ui,

and the distance between ur and ψi is defined as

d(ur,ψi) := ‖ur −ψi‖2.

Let li be the label of cluster i and li? be the label of the cluster
whose centroid is closest to ur, where

i? := argmin
i
d(ur,ψi).

Then, the predicted label of sample r is simply li? . Recall that
each cluster has one floor-labeled sample, and the floor label
of such a sample in the closest cluster becomes the predicted
label of r.

1It is possible that the new signal sample only contains the MAC addresses
that have never been seen before. In this case, it may be the one collected
outside the building and is thus discarded.
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VI. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we present the extensive experiment results
of GRAFICS. We first explain experiment settings and present
the results on performance comparison between GRAFICS
and state-of-the-art algorithms. We also study the impact of
different system components and parameters on GRAFICS.

A. Experiment Settings

Experiment setup: We conduct experiments on two large-
scale datasets. The first one is Microsoft’s open dataset in
Kaggle competition [38], which contains WiFi signal records
collected in 204 buildings, where the smallest one is a two-
story building and the tallest one has 12 floors. The other
dataset is our own dataset. We develop and use a data collec-
tion APP (shown in Figure 10) to collect WiFi signal samples
from five facilities in Hong Kong, which are two office towers,
a hospital, and two shopping malls. As shown in Figure 9, the
datasets cover a wide range of buildings in terms of the number
of floors and the building size. The number of sensed MAC
addresses varies over the buildings. The number of collected
RF signal samples is also quite different across the buildings.
Each floor is associated with around 1000 WiFi signal samples
on average, which are collected in a crowdsourced manner.
Unless otherwise mentioned, we present the average results of
the 204 buildings from the Microsoft dataset and the ones of
the five buildings from the Hong Kong dataset separately.

We set the baseline parameters for performance comparison
as follows. The learning and dropout rates of E-LINE are
set to 0.001 and 0.1, respectively. We use eight-dimensional
vectors for the ego and context embeddings in E-LINE and the
embeddings for other algorithms. We use 70% of each dataset
for training and 30% for testing. In the training samples,
there are only four floor-labeled samples (which are randomly
chosen) on each floor, while the rest of the samples are
unlabeled. We run each algorithm 10 times for all test cases

Fig. 10. Screenshot of our data collection APP.

and report their average values. All experiments are conducted
on the Ubuntu 18.04 server with 10 Intel Core I9-9900X cores
at 3.5GHz, 64GB memory, and an NVidia 2080Ti graphic card.
Our code is available online.2

Algorithms used for comparison: We consider the following
state-of-the-art algorithms where two of them are combined
with our proximity-based hierarchical clustering (denoted as
Prox) for fair comparison:
• Scalable-DNN [30]: Embeddings are first generated

through an encoding network, and floor ids are predicted
as one-hot vectors through a feed-forward floor classifier.

• SAE [15]: Stacked autoencoders are used to learn low-
dimensional embeddings, and a hierarchical classifier is
then used for floor classification.

• Autoencoder [37] + Prox: It learns the embeddings of
signal samples through an encoding and decoding process,
which are then used with Prox.

• Multidimensional scaling (MDS) [36] + Prox: It learns
the embeddings of samples by optimizing some distance
matrix, which are then used with Prox.

For scalable-DNN and SAE, we set the parameters as de-
scribed in [30] and [15], respectively. Recall that a majority
of training samples are unlabeled. We assign ‘pseudo’ labels
to the embeddings of unlabeled samples, which are the label
of the closest labeled embedding, for training the supervised-
learning models of scalable-DNN and SAE. The autoencoder
consists of the four layers of 1-D convolution with the ReLU
activation function. For MDS, the pairwise distance is set as
1 – cosine similarity between two vectors.

Evaluation metrics: We use micro-F and macro-F to evalu-
ate the classification performance. For floor i, we calculate the
number of true positives TPi, which is the number of correctly

2https://github.com/RobertFlame/Floors.
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Fig. 12. F -scores vs. the ratio of training data to the entire dataset, where the number of labeled samples is four on each floor.

classified samples. We also calculate the number of false
positives FPi, i.e., the number of samples that are incorrectly
labeled as i, and the number of false negatives FNi, i.e., the
number of samples misclassified as one of the other floors.
Then, we have Pi =TPi/(TPi+FPi), Ri = TPi/(TPi+FNi)
and Fi = 2PiRi/(Pi+Ri). Assuming that there are n floors
in a building, we define the following micro metrics:

micro-P =

∑n
i=1 TPi∑n

i=1(TPi+FPi)
, micro-R =

∑n
i=1 TPi∑n

i=1(TPi+FNi)
,

and micro-F = 2
micro-P ×micro-R
micro-P + micro-R

.

We also use the following macro metrics:

macro-P =

∑n
i=1 Pi

n
, macro-R =

∑n
i=1Ri

n
, and

macro-F = 2
macro-P ×macro-R
macro-P + macro-R

.

B. Comparison with State-of-the-art Algorithms

In Figure 11, we provide comparison results of GRAFICS
against other state-of-the-art algorithms for floor classification
with varying number of labeled samples on each floor. As
can be seen from Figure 11, more labeled samples are avail-
able, better the performance of each algorithm. Nonetheless,
GRAFICS achieves the best overall performance. It is even
able to achieve very high prediction accuracy with just a few
labeled samples (i.e., four samples) on each floor, thanks to its
novel bipartite graph modeling, high-quality graph embedding
via E-LINE, and effective hierarchical clustering.

Scalable-DNN and SAE, however, require a large number
of labeled samples. This is somewhat well expected due to
their supervised learning nature where their models need to be
calibrated with abundant labeled samples. To reach comparable

F -scores to the ones with GRAFICS, they need about 400 to
700 labeled samples per floor, which are 100× more than the
ones required by GRAFICS and would be difficult to obtain
in practice. On the other hand, MDS and autoencoder do not
have much benefit from having more labeled samples since
their embeddings are not as good as the ones by E-LINE due
to the missing value problem.

We are also interested in how the ratio of training data to the
entire dataset affects the performance of each model while the
number of labeled samples for training remains unchanged.
The results are shown in Figure 12, where the numbers of
labeled samples remain fixed as four. We observe that the
performance of every model improves with increasing number
of samples for training.

C. System Component Study

To see how much GRAFICS benefits from E-LINE over
LINE, we present the comparison results between GRAFICS
and GRAFICS with LINE (instead of E-LINE) in Figure 13.
Here we consider two cases where one is with four labeled
samples per floor and the other is with 40 labeled samples
per floor. For LINE, we consider its second-order proximity
only since it turns out to be better than LINE with first-
order and second-order proximities. We omit the results due
to space limit. As can be seen from Figure 13, when four
labeled samples per floor are only available, GRAFICS with
LINE does not perform well and it exhibits high variance in
its performance. As the number of available labeled samples
increases, the performance of GRAFICS with LINE greatly
improves and becomes more stable. However, GRAFICS al-
ready achieves the ideal prediction accuracy only with four
labeled samples. The results confirm the advantage of E-
LINE that learns the embeddings of nodes based on their local
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Fig. 14. Graph modeling and E-LINE vs. matrix representation.

neighborhood information, which is more than just their one-
hop neighborhood information – the case with LINE. In other
words, E-LINE makes the embeddings of nodes in their local
neighborhood similar to each other while letting the ones of
distant nodes dissimilar to each other.

We also evaluate the effectiveness of our bipartite graph
modeling and E-LINE in GRAFICS compared to the case
when GRAFICS is simply based on a matrix representation
of RF signal samples, i.e., the matrix representation is directly
used with the proximity-based hierarchical clustering. Here,
for the matrix representation, the missing entries are filled with
−120dBm, and each row is considered as an embedding of
each sample. As shown in Figure 14, the matrix representation
leads to quite poor classification performance, which clearly
indicates the seriousness of the missing value problem. How-
ever, GRAFICS is inherently free of this problem and achieves
outstanding performance, because E-LINE effectively captures
the similarities and differences among the RF signal samples
in the embedding space after their relationships are represented
in the bipartite graph.

D. System Parameter Evaluation

GRAFICS learns the embedding vector of each RF signal
sample (each node of one type in the bipartite graph) for
floor classification. It is thus important to check how the
dimension of the embedding vector affects the system per-
formance. Figure 15 shows the F -scores when the dimension
varies. GRAFICS consistently performs well regardless of the
choice of the dimension. This indicates that GRAFICS does
not require a careful choice of the dimension and its real
deployment would be easier.

When we construct a (weighted) bipartite graph, we need
to ensure that the edge weights are non-negative for graph
embedding. To achieve this, we define a proper weight func-
tion that adds a valid offset to all collected RSS values, i.e.,
f(RSS) = RSS+120. Another choice of the weight function
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Fig. 15. Insensitivity of GRAFICS to the choice of the embedding dimension.
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would be to use a function that converts each RSS value in
dBm into the one in power, which is g(RSS) = 10RSS/10.
In Figure 16, we present the comparison results between
GRAFICS (with f(·)) and GRAFICS that is used with g(·)
instead of f(·). We see that the performance of using f(·)
is substantially better than the one with g(·). The change in
RSS values does not lead to much difference in g(·) compared
to f(·), and thus the edge weights would be similar over
different edges. Having similar edge weights makes the learned
embeddings less effective. In other words, we observe that
preserving the differences in RSS values is important to obtain
high-quality node embeddings. We also tested different offset
values and observed that the performance is more or less the
same. We omit the results here for brevity.

To further validate the performance of GRAFICS when the
ambient RF signals are from fewer APs (or fewer sensed MAC
addresses), we consider the situation where a small fraction
of MAC addresses are assumed to exist in the buildings.
Figure 17 shows the results of GRAFICS with varying size
of the fraction. We see that even with 10% of MAC addresses
remaining on-site, GRAFICS can still achieve F scores higher
than 0.8, which demonstrates its robustness in sparse RF
environments. With 30% to 40% of MACs available on-site,
GRAFICS reaches F scores higher than 0.9, which shows that
GRAFICS can be readily deployed in practice.
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Fig. 17. F -scores of GRAFICS with varying number of MACs available.

VII. CONCLUSION

We have presented GRAFICS – a novel graph embedding-
based floor identification system, which consists of the novel
bipartite graph modeling, high-quality graph embedding via
E-LINE, and effective proximity-based hierarchical cluster-
ing. We have validated its performance on two large-scale
datasets and demonstrated its superior prediction performance
with only a few labeled samples over several state-of-the-art
algorithms (by about 45% in micro-F score and 53% in macro-
F score). We have also shown its various practical aspects for
real deployment.
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