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Floor number available

Introduction to Floor Identification
• Radio frequency (RF) signals (e.g., WiFi, iBeacon, 

UWB) with floor information enables plenty of 
applications:
• Multi-floor navigation
• Geo-fencing
• Scene construction with unmanned aerial vehicles
• Robot rescue

• Number of floors is usually available from
Google Maps and property managers.

Multi-floor navigation
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• Few Floor Labels are Available in 
Crowdsourcing
• Only sporadic floor labels are available 

from activities such as in-shop check-ins 
and contactless shopping. 
• Most crowdsourced RF signals are 

unlabeled.

• RF Signal Heterogeneity
• There are many MAC addresses in the

building, but each RF record only senses 
a small portion of them.
• The overlap ratio between pairs of RF

records is small.
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Crowdsourcing for WiFi Data Collection

In-shop check-ins Contactless shopping



• How to design an efficient and accurate floor identification algorithm 
under RF heterogeneity with few labels? 
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Problem Statement



• Record IMU (Inertial Measurement Unit) signals for floor transition [1]-[7]: 
strong assumption on user behavior.
• Requirement of MAC locations [8]-[12]: not easily available in practice.
• Matrix formulation for RF signals [13]-[18]: ad-hoc data imputation to fill 

in RF signal values that are not available.
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Sample\MAC 1 2 3 … 800

1 -50 -60 ? … -70

2 ? -65 -65 … ?

3 ? ? -58 … ?

4 -72 ? ? … -67

5 -64 -52 ? … -68

… … … … … …

2000 ? ? ? … -53

Existing Approaches



• Graph Embedding-based Floor Identification Using Crowdsourced RF Signals
• No assumption on user behaviors and MAC locations.
• Highly adaptive to RF heterogeneity.
• Well capture the relation between RF signals.
• Works well on sparsely labeled RF signals.
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GRAFICS

Overview of GRAFICS
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Advantages:
• Model sensed RSS (Received Signal Strength) without any data imputation.
• Highly adaptive to RF heterogeneity.
• Scalable to huge amount of crowdsourced data.

MACs RF Records
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Bipartite Graph Modeling for RF Signals
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Preliminaries: Embedding Generation with LINE
• LINE: Large-scale Information Network Embedding [19]
• Second-order proximity: based on shared neighbors between nodes.

Two nodes that share similar contexts (neighborhoods) are considered similar.

• Objective function

Theoretical Empirical



• Original LINE: only shared neighbors are considered.
• In our case, two close RF records on the same floor might only be 

connected through multi-hop connections.
• E-LINE: Extend the embedding learning algorithm to consider multi-

hop neighbors.
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E-LINE: Extended LINE for Multi-hop Connections

Extended connection
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• Recall LINE’s second order proximity:

• To enable information flow in multi-hop neighborhoods, E-LINE 
defines a new conditional probability:

• A new objective:
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E-LINE: the New Objective



• Combined with the objective function of LINE:

• After negative sampling we get:
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E-LINE: the Full Objective and Loss Function



• Clustering on embeddings generated for each RF record.
• Stop when each cluster has exactly one floor-labeled RF record.
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Semi-supervised Hierarchical Clustering
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Inference of New RF Signals
• Add the signal to the bipartite graph.
• Fix existing embeddings, minimize the loss function on newly added nodes.
• Get the embeddings of the RF signals for clustering.
• In the hierarchical clustering model, determine the label of each embedding

by finding the closest cluster in the model.



• Microsoft Kaggle dataset:
• 204 buildings

• Hong Kong dataset:
• 5 buildings

• Floor number ranges from 2 to 12.
• Each floor has around 1000 RF samples.
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Experiment Setup

Statistics of the dataset
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• SAE (Stacked Auto Encoder) [13]
• Scalable-DNN [14]
• Auto Encoder
• MDS (Multidimensional Scaling)

State-of-the-art Comparison Schemes
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Evaluation Metrics: Precision, Recall, F-score

Micro Macro
Micro: treat each sample equally Macro: treat each class equally



17

• GRAFICS gradually clusters the RF signal samples from the same floors in a 
three-story building, when only four samples are labelled for each floor.

Visualization of Clustering Process
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• GRAFICS already achieves high F-scores when where are few floor labels
• Scalable-DNN and SAE achieve comparable performance with ≈100x labels.
• MDS and auto encoder perform better than supervised ones when there

are only few labels.

GRAFICS Outperforms SOTA Methods
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E-LINE Generates Better Embeddings over LINE

• Run 10 times for each setup.
• When each floor only has 4 labels, GRAFICS with LINE exhibits a high variance.
• GRAFICS with LINE performs much better when there are more labels.
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• Missing values in the matrix representation are filled with -120dBm.
• Graph modeling significantly outperforms the matrix representation,

demonstrating its superiority in handling RF signal heterogeneity.

Graph Modeling Handles RF Heterogeneity
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• GRAFICS can already achieve a high F-score when only 10% of MACs
are used and 90% of MACs are removed.
• When there are ≈50% of MACs, GRAFICS can almost perform as well as

the full model.

GRAFICS is Robust to Dynamic RF Environment



• Propose to use bipartite graph to model RF signals.
• Propose E-LINE to learn better embedding for each graph node.
• Propose semi-supervised hierarchical clustering to do floor identification.
• Extensive experiment results show significant improvement over state-of-

the-art schemes.
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Conclusion
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