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Motivation

To improve the efficiency of robust deep neural networks.

▶ Pruning → Pruning without training parameters

▶ Quantization → Binarization

Pruning as a way of training binary neural networks.

Extending Strong Lottery Ticket Hypothesis to the case of robust binary networks.
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Methodology

Network f parameterized by w ∈ Rn. Training set {(xi , yi )}Ni=1.

▶ Non-adversarial training

min
w
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N

N∑
i=1

L(f (w , xi ), yi )

▶ Adversarial Training

min
w
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N
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max
∆i∈Sϵ

L(f (w , xi +∆i ), yi )

▶ Pruning as adversarial training (sparsity ratio: r)

min
m
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N
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i=1

max
∆i∈Sϵ

L(f (w ⊙ m, xi +∆i ), yi ), s.t. m ∈ {0, 1}n, sum(m) = (1− r)n
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Methodology

Adaptive pruning.

▶ Adaptively adjust the layerwise pruning rate.

▶ Prune fewer parameters for smaller layers.

Last batch normalization layer (LBN).

▶ Avoid gradient explosion / vanishing under binary initialization.

▶ Make the performance less sensitive to hyper-parameter selection.
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Experimental Results

Method Architecture
Pruning CIFAR10 CIFAR100 ImageNet100
Strategy FP Binary FP Binary FP Binary

AT RN34 Not Pruned 43.26 40.34 36.63 26.49 53.92 34.20
AT RN34-LBN Not Pruned 42.39 39.58 35.15 32.98 55.14 35.36
AT Small RN34 Not Pruned 38.81 26.03 27.68 15.85 25.40 10.44
FlyingBird RN34 Dynamic 45.86 34.37 35.91 23.32 37.70 9.54
FlyingBird+ RN34 Dynamic 44.57 33.33 34.30 22.64 37.70 9.52
BCS RN34 Dynamic 43.51 - 31.85 - - -
RST RN34 p = 1.0 34.95 - 21.96 - 17.54 -
RST RN34-LBN p = 1.0 37.23 - 23.14 - 15.36 -
HYDRA RN34 p = 0.1 42.73 29.28 33.00 23.60 43.18 18.22
ATMC RN34 Global 34.14 25.62 25.10 11.09 22.18 5.78
ATMC RN34 p = 0.1 34.58 24.62 25.37 11.04 23.52 4.58
Ours RN34-LBN p = 0.1 - 45.06 - 34.83

- 33.04
Ours(fast) RN34-LBN p = 0.1 - 40.77 - 34.45

Table: Robust accuracy (in %) on the CIFAR10, CIFAR100 and ImageNet100 test sets for the baselines and our
proposed method. “RN34-LBN” represents ResNet34 with the last batch normalization layer. “Small RN34”
refers to Smaller RN34. The pruning rate is set to 0.99 except for the not-pruned methods. Among the pruned
models, the best results for the full-precision (FP) models are underlined; the best results for the binary models
are marked in bold. The values of ϵ for CIFAR10, CIFAR100 and ImageNet100 are 8/255, 4/255 and 2/255,
respectively. “-” means not applicable or trivial performance.



Experimental Results

The pruning masks obtained by our method are structured.

▶ Many channels / kernels of the convolutional layers are totally pruned.

▶ Retained parameters are concentrated on a few channels / kernels.

▶ Pruned channels / kernels of the two consecutive layers are aligned.

Regular pruning is possible!
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