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1 Abstract

WiFi fingerprints are crucial in prevalent smart city applications, such as indoor

localization and WiFi monitoring. Recent works on fingerprinting with crowdsourced

data usually leverage inertial sensors, or radio propagation models to label collected

signals. They may suffer from accumulative error of sensors, non-line-of-sight envi-

ronments where models would fail. Other works use manifold alignment to estimate

locations with sparse fingerprints, but may not be easily scalable due to the computa-

tion complexity. In this paper, we propose a highly scalable crowdsourced fingerprinting

system based on pure WiFi signals without any assumption on signal propagation mod-

els. The system first generate an AP-observation network that captures the relationship

between WiFi signals and APs, and then uses network embedding to infer dimension-

reduced representations of WiFi signals. Finally the map matching system aligns these

learned representations onto the map with sporadic location labels. Extensive results

show that our proposed system can successfully construct the fingerprint database from

crowdsourced WiFi signals, and the performance for localization is improved compared

with the traditional method.
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2 Introduction

2.1 Overview

Indoor WiFi fingerprint information is essential for various smart city applications,

including localization services and WiFi heatmap monitoring. Each fingerprint1 consists

of location and corresponding Received Signal Strength Information (RSSI). Traditional

approaches for fingerprinting (collection of fingerprints) is to hire professional surveyors

with specially designed devices and collect WiFi signals at pre-designed locations, which

is laborious and time consuming.

As such, fingerprinting based on crowdsensing has emerged as a promising tech-

nique due to its effectiveness in data collection. The task then becomes how to attach

crowdsourced WiFi signals with location labels.

Recent works on crowdsensed fingerprinting usually take advantage of inertial mo-

tion units (IMUs) on mobile phones to predict user trajectories [1, 2], or leverage wire-

less signal propagation model [3] to estimate the distance between observation and

Access Points (APs), thus label collected WiFi signals accordingly. There are also some

works [4] which require only a small portion of fingerprints as references and use man-

ifold alignment to directly match the WiFi signals to the physical locations based on

the topological relationship between the learned WiFi signal manifold and the floor

plan. Though efforts are made on crowdsensed fingerprinting, there are still challenges

remaining:

• Continuous recording of data: IMU-based approaches require collected data to ap-

pear as continuous sequences, which pose restrictions on data collection thus may

not be practical. In addition, mobile phone power drains fast in such applications.

• Inaccurate distance estimation: Wireless signal propagation model can be used to

estimate physical distance under line-of-sight assumptions, but it is usually not

the case indoors.

• Scalability : There are hundreds of APs on sites such as shopping malls, and a sin-

gle spot is usually covered by much less APs. Manifold learning based approaches

process WiFi data as uniform vectors whose length is the number of total APs,

meaning that we need to fill in many missing values in those vectors. This greatly

hinders scalability of such schemes.

1We refer to WiFi fingerprint as fingerprint unless otherwise stated.
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To deal with these problems, this project proposes a novel indoor crowdsensed

fingerprinting system that constructs fingerprint database without IMU support or

assumption of signal propagation models, and is capable to evolve over time. The system

first represent WiFi data with a bigraph that simulate real-world WiFi connections,

then infers relative positions of WiFi signals in reduced signal space based on signal

similarity, and finally uses few randomly collected location labels to pinpoint them on

physical maps. This way, the crowdsensed WiFi signals are labelled and the fingerprint

database is constructed.

We show an overview of our system in Figure 1. Our system first uses network

embedding to learn latent representations (or embeddings) for WiFi data (or observa-

tions) such that more similar WiFi signals appear closer in embeddings. It then uses a

semi-supervised map matching algorithm to match the embeddings into physical loca-

tions with a small portion of labelled data. Finally the estimated location labels with

corresponding WiFi data are stored to fingerprint database. Our contributions can be

summarized as follows:

• We represent WiFi data with a bigraph connecting WiFi signals and APs instead

of a matrix. This data structure solves the RSSI missing value problem.

• To the best of our knowledge, this is the first work to use network embedding to

estimate proximity relationships between WiFi patterns. We are able to construct

fingerprint database without INS or wireless propagation models.

• We design a semi-supervised map matching algorithm to map observations from

latent space to physical space. A multi-spring system is applied to obtain physical

locations of observations given a small portion of labelled data.

• Extensive experiments have been conducted to evaluate the performance of our

system. Results show that our proposed system can achieve location error of less

than 1m with only less than 10 labelled data.
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Figure 1: Overview of the system. WiFi signal vectors are processed with network

embedding to get embedded coordinates, and then fed to map matching engine to

obtain estimated labels.

2.2 Objectives

The goal of this project is to construct a Wi-Fi fingerprint database in indoor build-

ings from a few fingerprints and some crowdsourced data. To achieve this goal, the

following objectives are going to be made:

1. Acquire Wi-Fi signal datasets from multiple buildings;

2. Build an algorithm that matches Wi-Fi signals to real-world coordinates;

3. Evaluate the performance of the proposed method in various aspects such as

location accuracy and algorithmic complexity.

The first objective is accomplished by crowdsourced Wi-Fi signal collection and

acquisition of prior fingerprints.

To reach the second objective, an AP-observation network will first be generated

to model physical settings of APs and Wi-Fi signals. Then knowledge of network

embedding is applied to predict relative distance between Wi-Fi signals as well as

aligning them with physical coordinates.

Lastly, by visualizing cumulative distribution function (CDF) of location error of

the algorithm and comparing it with state-of-the-art works, the third objective will be
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achieved.

The biggest challenge of this project is the dependency of prior fingerprints. They

can significantly reduce the error of fingerprint database, but require a lot of human

labors at the same time. So a balance should be made carefully between the number of

prior fingerprints and the location accuracy of the output fingerprint database.
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2.3 Literature Survey

There are a variety of Wi-Fi fingerprinting methods under different categories, and

we will discuss them below. Besides, since the proposed method uses graph learning, a

short literature will also be described.

2.3.1 Wi-Fi fingerprinting

Wi-Fi fingerprinting has been broad studied, from traditional site surveys to more

advanced ones. In the traditional site survey, professionals will record Received Signal

Strength Indicator (RSSI) of all detected access points (APs) at each of reference points

(RPs), which usually cover the place of interest in indoor environments. These RSSI

vectors will be stored as a database in the server along with corresponding location

labels. When a location query is received, the server will predict approximate loca-

tion based on the similarity between the query RSSI vector and those in the database,

according to K nearest neighbor mentioned in [5]. However, since site survey is time

consuming and labor intensive, it’s not easy for deployment in all the buildings world-

wide.

Recently, there has been some advanced technology that can provide better solu-

tions, either in improving the localization accuracy or reduce deployment difficulty.

Some trending topics are shown as follows:

Crowdsourced Wi-Fi with inertial navigation system (INS) Since user’s walk-

ing could provide an approximate distance information, and INS in mobile phones which

contains an accelerometer and a gyroscope enable the estimation of user movement,

there has been a wide range of researches that make use of it as an assistance to Wi-Fi

localization, including Walkie-Markie[1], Moloc[6] etc. They will record IMU readings

and estimate step count, step length, heading direction and finally try to recover the

walking trajectory. However, due to accumulative error of accelerometer and gyroscope,

the recovered trajectory could suffer from severe distortion, which causes much trouble

for building fingerprint database. Besides, these methods require temporal information

from INS and this information may not always be available. The proposed method

in this work does not require users to collect continuous sequence of data. Instead,

users can record data any time at any location, no matter the data is collected from

continuous walk or from just random points in the site. Therefore it is more robust to
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users’ motion status.

Crowdsourced Wi-Fi with Wi-Fi signal propagation model Signal propaga-

tion model is a ideal estimation of signal strength with respect to distance from mea-

surement to the signal source. One popular work is EZ [7], which use RSSI to constrain

the relative position between signal point and APs. The general idea of this work is

quite brilliant, since it does not need extra information and could achieve acceptable

result, but one drawback is that it has an assumption on the Wi-Fi signal propagation

model which is thought to be not reliable in real-world environment. The proposed

method gets rid of the propagation model, and only depends on similarity between

RSSI values hence is more convincing to use.

Crowdsourced Wi-Fi with prior fingerprints Researchers have been making ef-

forts to reduce the labor of traditional site survey. The technique proposed in [8] utilizes

compressive sensing to localize users. It consider the reference points as a sparse ma-

trix and recover the more detailed signal map. But it still requires many fingerprints to

work well. Another trending field is manifold alignment [4, 9, 10]. It first creates two

manifolds in both the signal space and the physical space, and a transfer learning al-

gorithm will match the local geometry from one manifold to another. By this learning,

only a small portion of fingerprints are required to achieve similar performance as other

works. But one drawback is that its parameters need tuning on different environments,

and this limit the ability for scalability. The proposed method in this work also uses

a small portion of fingerprints but makes an effort to improve the robustness of the

parameters so that it can be extended into different environments.

2.3.2 Network embedding

Network embedding has stand out as a intuitive way to capture the distance and

relationship between nodes. It represents nodes as a low-dimensional vector, and has a

wide range of applications based on the representation vector, including link prediction

and node clustering, as mentioned in [11]. For weighted undirected graph, there are

some good unsupervised model like LINE [12], which preserve both first order and

second order proximity between vertices in a graph. In this work, we will do some

modifications to LINE and adapt to our cases for indoor localization.

Graph neural networks use deep learning method to solve multiple graph-related
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problems, and it can also be used for network embedding problems. The model could

be unsupervised, semi-supervised and supervised. [13] has conducted a comprehensive

review on popular graph neural networks. In this work, we will also choose some models

including graph auto encoder (GAE) [14] as the comparison schemes to learn the graph

structure.
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Figure 2: Flow diagram of the whole system.

3 Methodology

3.1 Design

This section will describe the formulation of the problem and briefly discuss the pro-

posed method to the problem. To begin with, the formulation of this work was defined.

Then the whole work will be divided into subtasks, namely building AP-observation

network, network embedding and map matching system, and database construction.

The whole workflow is shown in Fig.2

3.1.1 Dataset construction and problem formulation

The focus of this work is to use a small portion of fingerprints and crowdsourced Wi-

Fi data to construct a fingerprint database. Before introducing the problem formula,

some definitions and notations have to be made for clarity.

Definition Wi-Fi data are taken at random points in the indoor environment. These

points are called observations. Each observation has two attributes: measurement and

location label. The measurement of an observation is a collection of all detected AP’s

MAC address and corresponding RSSI values taken at this point. The coordinate of

this observation is termed as its location label.

An illustration of collected Wi-Fi data are shown in Fig.3a. There are totally n

observations and m APs in the experiment environment. The subscript of the RSSI is

14
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(a) Wi-Fi dataset (b) Location label set

Figure 3: Illustration of datasets. ”O” stands for observations, ”AP” for access points

and ”RSSI” for received signal strength indicator. ”-” means that the AP is not detected

hence no RSSI record.

defined as:

RSSIij = RSSI value of APj measured at Oi.

For example, the measurement for O2 in Fig.3a is a collection of APs’ MAC addresses

and RSSI values:

OM
2 = {MAC1 : RSSI21,MAC3 : RSSI23, · · · ,MACm : RSSI2m}.

Note that since AP2 is not detected by O2, the entry for AP2 is not included in O2’s

measurement.

The location label of O2 is simply its coordinate in the indoor environment:

OL
2 = {x2, y2}

Definition A non-anchor observation is an observation whose location label is un-

known, while an anchor observation is an observation with known location label.

Observations are categorized into two sets based on the presence of location labels.

A is the set of indices for anchor observations, and N is for non-anchor observations.

Denote the number of anchor observations as k, then there are n−k non-anchor observa-

tions in the dataset. In this work, there are only a small portion of anchor observations,

so k � n.
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Figure 4: Illustration of AP-observation network. Four red boxes surrounding the

network give explanations to notations and indices in the network.

Fig.3b shows the example of location label set. Since the first k entries are anchor

observations, they have the location labels already, and the remaining don’t have yet.

Our problem is to use the Wi-Fi dataset and this location label set to estimate the labels

for non-anchor observations. Once we have the labels, a Wi-Fi fingerprint database can

be established for indoor localization.

Definition A fingerprint database is a collection of observations with either actual

location labels (anchor observations’ case) or estimated ones (non-anchor observations’

case).

The above definitions give fundamental concepts on which the whole problem are

built. The problem statement is therefore made as follows:

Problem statement Given a set of n observations {O1, O2, · · · , On} with their mea-

surements {OM
1 , O

M
2 , · · · , OM

n }, among which k(k � n) of them are anchor observations

with location labels {OL
1 , O

L
2 , · · · , OL

k }, estimate the location labels for non-anchor ob-

servations {ÔL
k+1, Ô

L
k+2, · · · , ÔL

n}.
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Figure 5: Illustration of LINE. o, ap, v are the notations for observations, APs and

vertices in the network.

3.1.2 Building an AP-observation network

The first step after we get the crowdsourced Wi-Fi data is to construct the AP-

observation network, which is an intuitive simulation of physical environment. In this

network, both APs and observations become vertices of the network, and once there

exists RSSIij, there is an edge from Oi to APj, with the weight of RSSIij + c, where

c is an offset to make all weights nonnegative. Fig.4 shows the structure of the AP-

observation network.

The reasons for using AP-observation network instead of a matrix to store the

WiFi signals are twofold: first, this network solves the problem of missing RSSI values,

since we do not need to fill up missing values as what we do for the matrix. Second,

this network is easy to extend when new observations come in. Matrix form of WiFi

data encounters the problem of extending vector lengths when new APs are introduced

by incoming observations. AP-observation network can simply solve this problem by

adding new observation nodes and AP nodes. It is also convenient to remove some

observations or APs if they are useless at some stages.

3.1.3 Network embedding

The generated AP-observation network will be fed into the network embedding

algorithm to learn lower-dimensional representations of both observations and APs.

It studies the local structure of the AP-observation network based on two types of

proximity, then preserve these local structures in the embedded space. There is no
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location labels required in the network embedding, so this step is unsupervised. To

make the algorithm work best, the output dimension of vertices are usually higher than

2-D and cannot be directly used as location labels.

There are many network embedding algorithms already in the publications, and

they focus on different applications, including link prediction and node classification,

etc. In this work we chose LINE [12], because it can better capture the local proximity

of the network and is able to handle large datasets, which enables the scalability of

this work. In addition, its running complexity is quite low compared to state-of-the-art

works.

LINE mainly deals with local proximity relation between vertices in the network.

That means if two observations have more similar measurements than others, they

should be closer in the embedded space. An illustration of LINE is shown in Fig.5.

Denote vertices as vi, where i is the index of vertex. There are two types of proximity

in LINE, first order and second order proximity. First order proximity defines the joint

probability of vi and vj as:

p1(vi, vj) =
1

1 + exp(−~uTi · ~uj)
,

where ~ui, ~uj are the embeddings for vi, vj. Its empirical probability is defined as:

p̂1(vi, vj) =
wij∑

(i,j)∈E wij

,

where wij is the weight of edge (i, j), and E is the set of all edges in the network.

KL-divergence is used as the objective function:

O1 = KL(p̂1||p1) = −
∑

(i,j)∈E

wij log p1(vi, vj).

Second order proximity considers neighbor relationship and tries to preserve tran-

sition probability. To be more specific, it first defines the probability of “context” vj

given vertex vi as:

p2(vj|vi) =
exp(~u′j

T · ~ui)∑|V |
k=1 exp(~u′k

T · ~ui)
,

where ~u′j, ~u
′
k are the embedding for vj and vk when they are treated as “context”.

Then the empirical probability of “context” is defined as:

18
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Figure 6: Illustration of map matching algorithm.

p̂2(vj|vi) =
wij∑

k∈N(vi)
wik

,

.

where wij is the weight of edge (i, j), and N(vi) is the set of all neighbors of vi.

Dissimilarity of the two probabilities is measured by KL-divergence, which serves as

the objective function that should be minimized:

O2 = KL(p̂2||p2) = −
∑

(i,j)∈E

wij log p2(vj|vi).

By using negative sampling technique, LINE can learn the embeddings for large

datasets very fast. After processing the AP-observation network, LINE will generate

embedded coordinates for observations and APs. Currently APs’ embeddings are not

included in this work, so only embeddings for observations will be kept for map match-

ing.

3.1.4 Map matching system

The map matching system takes the embeddings of observations and location labels

of anchor observations, and estimates the location labels for non-anchor observations.

19
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The idea is to use nearest neighbors as local constraints and use location labels as global

constraints. The flow diagram of this system in shown in Fig.6.

To begin with, the embeddings will be divided into non-anchor type and anchor

type. Then we have two sets, X for embeddings of non-anchor observations and Y for

anchor ones. We also have the set of location labels for anchor observations W and Z

for the set of estimated location labels of non-anchor observations.

In embedding space, to capture the local structure, k-nearest-neighbor (kNN) will be

used on the embeddings both within non-anchor observations and between non-anchor

and non-anchor observations to extract neighbor information. For each embedded vec-

tor, the algorithm finds the nearest k embedded vectors, and the edges between the

vector and its nearest neighbors will be selected as a neighbor information. Denote the

chosen vertex pairs as ENN and ENA correspondingly.

Then in physical space, neighbor sets ENN and ENA are used to build a new network

in which each vertex represents the estimated location label of the observation. Each

observation corresponds to an embedded vector in the embedding space and a location

label in the physical space. Therefore, the network in the physical space contains

the estimated location labels for observations. They are first initialized with random

location. Then we set up our objective function based on the constraints between non-

anchor observation and anchor observations. The objective function consists of three

parts, namely the loss within non-anchor observations lossNN , and the loss between

non-anchor observations and anchor observations lossNA:

lossNN =
∑

(i,j)∈ENN

(‖~xi − ~xj‖ − ‖~zi − ~zj‖)2,

lossNA =
∑

(i,k)∈ENA

(‖~xi − ~yk‖ − ‖~zi − ~wk‖)2.

The reason for not having loss within anchor observations is that both their embed-

ded vectors Y and their physical locations W are fixed, so the loss cannot be further

optimized.

So the objective function is:

min
X

lossNN + µ · lossNA,

where µ is the weight parameter that controls the focus of optimization. The higher

20



GCH1 FYT - Indoor crowdsourced Wi-Fi fingerprinting with network embedding

the µ, the closer the non-anchor observations will approach neighboring anchor obser-

vations, and the more the non-anchor observations will push away from each other.

Then the derivatives for two loss functions are calculated as:

∂lossNN

∂~xi
= 2

∑
~xj∈knn(~xi,X)

(‖~zi − ~zj‖ − ‖~xi − ~xj‖)
‖~zi − ~zj‖

· (~zi − ~zj),

∂lossNA

∂~xi
= 2

∑
~wk∈knn(~xi,Y )

(‖~zi − ~wk‖ − ‖~xi − ~yk‖)
‖~zi − ~wk‖

· (~zi − ~wk).

The loss function will be trained by Adam optimizer for fast convergence. After

training, the set of estimated location labels Z is obtained. Measurements and location

labels for all observations are then passed to the construction of fingerprint database.

3.1.5 Fingerprint database construction

Once we get the estimated location labels for non-anchor observations, we can com-

bine them to be fingerprints. Since crowdsourced data are taken at random points and

some of them may be very close to each other, a fingerprint simplification is used to

eliminate unnecessary fingerprints which are too close. Specifically, when we have the

location label set, the algorithm will choose a random point and remove other points

within a given distance threshold. Then this process will continue until all the points

in location label set are either chosen or removed. The chosen points will form the final

fingerprints. After fingerprint simplification, the remaining will be stored as fingerprint

database, and this can be used for practical localization services.
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Figure 7: Hanghau shopping mall

site Hanghau shopping mall

area 180 × 132 = 23760 m2

training data 1510

testing data 1560

turning points 17

Table 1: Information about the experiment sites

3.2 Implementation

Based on the design section above, we have the following implementations in this

work:

3.2.1 Collection of the dataset

We collected crowdsourced Wi-Fi data in various indoor environments including the

school campus and the shopping mall. They represent two typical indoor conditions: in

school campus there are many narrow corridors, whereas in shopping malls the corridors

are much wider and there are also open squares. The maps of them are shown in Fig. 7.

The data are collected through a set of pre-defined paths so that the actual location

labels of WiFi signals can be easily recorded. All the collected data have their location
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labels, and they are only used for validation. Table 1 shows the size of the dataset and

the area of the experiment sites.

3.2.2 Setup the running environment on a Linux server

All the codes are written in Python. Because the program is large and requires

matrix computations, it is good to run it on a server. Therefore, we setup the envi-

ronment on the server in the lab. Anaconda is an integrated software for managing

Python packages conveniently, so we install it on the server. To write code directly

on the server, Jupyter notebook and vim is carefully configured. Some other common

packages are also installed, including scikit-learn, numpy, matplotlib, tensorflow, etc.

3.2.3 Implement the data loader program

Data loader is a program that loads the collected data and convert them to an

AP-observation network. It will first number both the observations and APs, and then

generate an edge list for further use. The data loader also allows incremental update of

the edge list, so it is easy to extend the dataset when new WiFi signals are collected.

3.2.4 Implement the anchor selection program

In this project, the anchors are selected based on some criteria. For example, the

anchors are chosen uniformly throughout the whole site. Other criteria are also possible,

including sampling anchors near critical points (e.g., turning points), or just sampling

randomly in the site. For testing, different parameters (e.g., sampling density) can be

applied to the criteria so that the number of anchor observations is controllable.

3.2.5 Implement the evaluation codes

To show how our proposed method works, a set of evaluations must be made. So

we wrote a series of functions that can analyze the data in various aspects. For a set

of data, the evaluation codes can calculate the basic statistics such as median, IQR

(interquartile range) and RMSE (root mean square error). It can also shows the CDF

(cumulative distribution function) of a given dataset. For two sets of data, it can analyze

the correlation between them by both plots and calculation of correlation coefficient.

If we want to compare multiple experiments at the same time, a box plot function can

handle this situation.
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3.2.6 Implementation of the main program codes

Based on the design, the program code is implemented step by step. At the be-

ginning, we wrote a small demo code to validate that our method is usable for the

collected data. A lot of software testing procedures were conducted to fix the bugs for

the program. When the testing were done, we put them into Python files, and added

a module that can automatically conduct a sequence of experiments. In addition, we

also implemented a mode selection module so that all the experiments and the testing

process can be done by running the same program with different modes. These modules

allow us to run the program more conveniently.

Initially, the demo code is written in Jupyter notebook for better interaction. When

most of the codes are implemented and tested, they are migrated to a series of Python

files. For the existing algorithms such as kNN, we directly use the API provided by

scikit-learn. After trying on several existing network embedding algorithms, we finally

adopt the opensource repository on GitHub to conduct the LINE algorithm. As for the

map matching part, we uses Tensorflow to build up the model and defines the objective

function.
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(a) Database error (b) Positioning error

Figure 8: Illustration of different errors. Database error shows the ability to correctly

construct the fingerprint database, while positioning error shows the ability to correctly

locate a person.

3.3 Testing

The performance of the proposed work should be comprehensively examined, in-

cluding the accuracy of database reconstruction, location error, complexity, and other

factors that may affect them.

3.3.1 Testing the accuracy of database reconstruction

Database error measures the ability for the algorithm to correctly estimate the

location labels for non-anchor observations. It is defined as the distance between actual

location labels and estimated ones. The concept is shown in Fig.8a. Specifically, denote

Ze as the set of all estimated location labels, and Zt as the set of all true location labels,

then the database error for one fingerprint is:

edbi =
∥∥zei − zti∥∥2 .

Since most of the location labels will have small error and only a small number of

location labels may have large error, we use the median and IQR(interquartile range) of

all the error to evaluate the performance instead of using mean and standard deviation.

Besides, RMSE (root mean square error) will also be used for evaluating the error.

3.3.2 Testing the accuracy of locating users

Positioning error measures the ability for the algorithm to correctly estimate the

location of a user given one measurement. It is defined as the distance between actual
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position of incoming observations and estimated ones using fingerprint database. The

concept is shown in Fig.8b. Specifically, denote ZL as the set of all location labels of

observations, ZM as the set of all WiFi measurements for observations, QM as the set

of all query WiFi signals, and QL as the set of location labels of all query WiFi signals,

then the database error for one fingerprint is:

eposi =
∥∥loc algo(qMi , ZM , ZL)− qLi

∥∥
2
,

where loc algo is a localization algorithm that can use WiFi signals and fingerprints

to estimate the location labels for incoming queries. Because positioning error is similar

to database error, we can still evaluate it using median, IQR and RMSE of the error of

all queries.

3.3.3 Testing the positioning error via different localization algorithms

When the fingerprints are generated from the algorithm, there are several ways to

use them for location estimation. One simple approach is knn. When a new query

WiFi signal ~qM comes in, it will be compared to all fingerprints in ZM and the WiFi

cosine similarity will be calculated as follows:

similarity(~qM , ~zMi ) =
~qM · ~zMi
‖~qM‖ · ‖~zMi ‖

,

where ~qM and ~zMi are RSSI vectors of the same length. To deal with the missing

RSSI values, this method usually fill the missing value with a minimum value of -120.

After comparing the query WiFi signal with all fingerprints, the most k similar ones

will be used to interpolate the location of the query:

knn(qM , ZM , ZL, k) =
∑

~zMi ∈topk(similarity(~qM ,~zMi ))

similarity(~qM , ~zMi ) · ~zLi .

Besides, our proposed method can also be used as an offline localization algorithm.

To estimate the location of a query WiFi signal, the algorithm will add it to the existing

AP-observation network, and continue to use network embedding to train the network.

After that, we obtain its embedded vector, and establish the neighboring information

with fingerprints’ embedded vectors. Then the map matching model will update its

physical location based on the objective function. When the map matching system
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finishes, the learned location label will be the estimated location of the query WiFi

signal.

However, since this process is much more complex than knn method and its running

time is also much higher, our proposed algorithm is only used as a comparison to the

knn method here. But for fingerprinting process where real-time estimation is not

required, our proposed algorithm is capable to handle.

3.3.4 Testing the relationship between database error and positioning error

There is a strong connection between database error and positioning error. Exper-

iments will be conducted to reveal how they relate to each other. It is expected that

the database error is positively related to the positioning error. A scatter plot will be

generated to show the general relationship between two types of error, and the spear-

man coefficient, a measure of correlation between two variables, will be calculated to

quantify this relationship. The spearman coefficient is defined as the Pearson correla-

tion coefficient between the ranked variables. For two sets of data X, Y , their values are

first converted into the rank set X ′, Y ′, and the Pearson correlation will be calculated:

ρspearman
X,Y = ρpearsonX′,Y ′ =

∑N
i=1(x

′
i − x̄′)(y′i − ȳ′)√∑N

i=1(x
′
i − x̄′)2

∑N
i=1(y

′
i − ȳ′)2

3.3.5 Testing the relationship between anchor observations and database

error

Anchor observations play an essential part of the proposed algorithm. To check the

generality and robustness of the algorithm, anchor observations will be generated in dif-

ferent settings in terms of number of anchor observations, choice of anchor observations,

etc. To be specific, the following cases will be considered:

• Choose anchors uniformly in the environment, with a predefined sampling density;

• Choose anchors randomly in the environment, with a predefined sampling density;

• Choose anchors that are close to critical landmarks, e.g., turning points.
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3.3.6 Testing the relationship between parameter choices and database er-

ror

There are several hyperparameters in both LINE and the map matching system.

Experiments will test different settings of the parameters and obtain the database error

as metrics. If the algorithm works equally well with several sets of parameter values,

then it achieves a good robustness in different conditions. On the other hand, if the

algorithm is sensitive to the hyperparameters, then we can find the optimal values for

each of them.
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Figure 9: A CDF for the database error

Name Method

RFK RP + FP + kNN

RK RP + kNN

RFP RP + FP + proposed method

Table 2: Notation and explanation of different localization methods. They can all be

used to calculate positioning error

3.4 Evaluation

To begin with the evaluation, some notations should be carefully defined. First of

all, the term “RP” or “Reference Point” is used to denote the initial fingerprints, and

“FP” or “fingerprint” is the generated one. Then based on the standard proposed in

Section 3.3, we evaluate the performance of the method by the following results:

3.4.1 Database error

Database error can be measured in different aspects, such as median, iqr, rmse, and

CDF. We take an experiment from Hanghau shopping mall as an example to show the

database error. According to Table 3, the median, iqr and rmse of database error is

4.44m, 5.59m and 7.69m respectively. Fig. 9 shows the CDF for this experiment. From
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type median (m) iqr(m) rmse(m)

Database 4.44 5.59 7.69

RFK 23.26 37.27 41.41

RK 27.12 34.92 44.29

RFP 12.53 24.39 25.67

Table 3: Statistics of an experiment in Hanghau shopping mall. “Database” stands

for database error, “RFK”, “RK” and “RFP” stand for the positioning error using

localization algorithms in Table.2 respectively.

Figure 10: A CDF for the positioning error using different localization algorithms
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Figure 11: A scatter plot showing the relationship between positioning error and

database error

the plot, it is easy to find that the location estimations for more than half of the WiFi

signals have the error less than 5m. And over 90% of them have the error within 15m.

There are still a small portion of data who has extremely high error. This may result

from the map matching part where distant points are mistaken as close.

3.4.2 Positioning error

Positioning error is an approximation of how well the localization algorithm can

perform using either reference points or fingerprints or both. As proposed in the testing

section, we design three localization algorithms, and their names and methods are shown

in 2. For RFK, both reference points and fingerprints are used as a database, then the

location estimation can be performed by kNN. In RK, fingerprints are removed from

the database, and the rest is the same as RFK. As for RFP, the kNN module is replaced

by our proposed localization method as discussed in the testing part.

When we do not have fingerprints, we can only use RK for localization. But after we

generate fingerprints from our proposed method, we can use it to improve the location

accuracy. So RFK and RFP are proposed as a better way to estimate locations. Table 3

shows the positioning error for all three methods. As shown in this table, RK performs

the worst, with a median error of 27.12m. By introducing the generated fingerprints,
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RFK achieves a smaller error of 23.26m. However, the iqr of RFK is 2m larger than RK.

This shows that although RFK has a smaller overall error, but its variation is higher

than RK. RFP has a significant improvement in all statistics than RK and RFK, with

a median error of 12.53m and iqr error of 24.39m. This result is reasonable because

by using our proposed localization method, the missing RSSI value problem will be

avoided. Besides, the map matching system provides higher constraints than simply

considering k most similar WiFi signals in kNN. Fig.10 shows the CDF of positioning

error for all three localization algorithms. It can also visually show that RK has the

worst performance, RFK has a better performance and RFP is the best among the

three. With RFP, over 60% of points have the error of less than 20m, but for RFK and

RK only 50% and 40% of points can achieve this level. Notice that there is still a long

tail in RFP, and this may also be the problem of misconnecting distant points in the

map matching.

3.4.3 Relationship between database error and positioning error

Database error and positioning error are quite similar, since the positioning relies

on the database and a more accurate database can perform better in positioning. So

we study the relationship between the database error and the positioning error using

RFK. Fig.11 shows the scatter plot of two types of error. Each blue point consists of

the median of both database error and positioning error in one experiment. The red

line is the linear regression of all the blue points. As shown in the graph, the blue

points generally distribute in a linear model, meaning that the less the database error,

the less the positioning error. Spearman coefficient also support this interpretation,

since the two types of error have a correlation of 85.7%, showing that they have a high

correlation.

There is another issue in this graph. The slope of the line is far from 1, meaning that

database error and positioning error are not equal in general. The reason for this may

be related to kNN, since it conducts the weighted average location of k most similar

ones. If we reduce the number of k until k = 1, then the slope may be close to 1.

3.4.4 Relationship between reference point density and database error

Reference points play an critical part in the whole method, so it is of great value

to study how the number of reference points affect the database error. We sample
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Figure 12: A CDF of database error for several reference point sample frequencies.

the reference points in different densities, i.e., sampling them in 5m, 10m, 15m, and

20m. Then we run the algorithm and test the database error. The results are shown in

Fig.12. As is clearly shown, the database error increases as the reference point density

is reduced. Besides, the maximum error also increases when the reference point density

is reduced. When the sample density is 15m, the maximum error can even reach 80m.

This shows that our proposed method is sensitive to the number of reference points. In

terms of the level of location accuracy, approximately 85% of the points’ error are within

10m when the sample density is 5m, and this ratio becomes 70% with the density of

10m, 50% with the density 15m, and 25% with the density 20m. However, if we measure

the performance by looking at how many points have error less than the sample density,

then it is surprising to find that nearly 65% of the points reach this goal regardless of

sample densities. This means that our method can make sure overall more than half

of the WiFi signals are labeled with satisfying location labels. It is also illustrated in

Fig.13 that most of the data have acceptable database error, with a low median error

and a low upper quantile error. However, there are also some outliers whose database

error is far larger than the sample density, and the error of some points can reach 80m.

For those whose error is much larger than the sample density, they may suffer from

incorrect neighboring information generated in the map matching system.
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Figure 13: A box plot of database error for several reference point sample frequencies.

Figure 14: A box plot of database error for several k values

34



GCH1 FYT - Indoor crowdsourced Wi-Fi fingerprinting with network embedding

Figure 15: A box plot of database error for different µ choices

3.4.5 Relationship between k values and database error

Before the map matching system starts, neighboring information is captured by

kNN. The larger the k value, the more neighbor will be connected to each point.If

the relative distance between embedded vectors are the same as that between physical

locations, then more neighboring information will definitely improve the accuracy and

reduce the database error. However, since LINE can only give a rough local structure

of observations, the value of k may be restricted to a small value. Fig.14 shows the

effect of different k to the database error. As shown in the box plot, when k increases,

the median of database error also increases, meaning that additional neighbors will be

harmful to the performance.

3.4.6 Relationship between the weight parameter and database error

The weight parameter µ controls the level of constraints made by reference points.

A larger µ will drag other points closer, but the constraints between non-anchor ob-

servations will be reduced. So there is a balance between the two types of constraints.

Fig.15 shows how µ affects the database error. In terms of median and iqr error, the al-

gorithm is not sensitive to µ’s value, as they are almost of the same value. But its value

affects the maximum error. When µ starts from 0.01 to 2, the maximum error drops
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down for around 10m, and when it continues to increase from 2 to 10, the maximum

error also increase. This implies that although µ does not help to reduce the median

database error, it can be optimized to reduce the maximum error.
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Figure 16: An example of three RSSI vectors

4 Discussion

In this section, we will discuss the key issues of each part of the algorithm, and

bring some outlook to the future work.

4.1 Missing RSSI value problem

Traditionally, the similarity between WiFi signals is measured by Euclidean distance

between the vectors, or by cosine of the intersection angle of them. Both methods have

to deal with the missing RSSI value problem. Take Fig.16 as an example. Intuitively,

since the second and the third vector have overlapping APs, they are considered as

close, while the second vector is further from the first one because there is no overlap

of APs. But when we use Euclidean distance to measure their similarities, we have

to fill in the missing RSSI values with a predefined constant, usually smaller than the

minimum RSSI value among the vectors. In this example, this constant can be -120,

-100 or -90, etc. However, for each of these values, the calculated Euclidean distance

between the first and the second vector is smaller than that between the third and the

second vector, which indicates a counterintuitive result that the second vector is more

similar to the first one than the third one.

The AP-observation network can solve the missing RSSI value problem because it

does not need to fill in the missing RSSI values. In this network, the measured RSSI

values are converted to the edge between the observation and the AP. If one observation

does not consist one AP’s RSSI value, then there is no edge between the observation and

that AP. But this network also has a drawback that the RSSI values are converted into

non-negative edge weights by adding an predefined offset. This conversion is required

by LINE to correctly capture the closeness between observations and APs. The effect

of using different offsets are unknown up to now. Further work should either find a

better way to get the offset or find a better network embedding model that can allow

negative edge weights.
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4.2 The hyperparameters in LINE

There are two main hyperparameters that affects the output of LINE, namely the

order of proximity and the output dimension. The first one determines which proximity

to use, and the second one determines how much latent information can be preserved.

If the output dimension is low, then some hidden information of the AP-observation

network may be lost; but if the output dimension is high, then it is harder to train and

the computation will increase significantly.

Another problem is that we did not have a good metrics to evaluate how good LINE

performs. For now the evaluation focus only on the database error and positioning error,

which is the final result of the whole algorithm instead of an intermediate result from

LINE. Further work should set up a evaluation method for the performance of LINE.

4.3 The hyperparameters in the map matching system

Currently the map matching system extracts the neighboring information of em-

bedded vectors using kNN, which means that each embedded vector needs to connect

the same number of vectors. However, in the crowdsensed WiFi signals, their locations

may not be uniformly distributed in the site, and this leads to an uneven number of

neighbors of each embedded vector. Therefore, further work should solve this problem

by automatically choosing the number of nearest neighbors.

As for the weight parameter µ in the loss function, its value is also predefined

beforehand. This value may vary in different sites. So it is necessary to study the

relationship between µ and the dataset, and derive a formula for determining its value

in different experiment settings.

4.4 The choice of reference points

For now the reference points (anchor observations) are chosen uniformly in the

environment. This choice may not be optimal because it does not consider the special

conditions in the environment. For example, the turning points can be treated as

an important landmark that connects different corridors. If reference points are only

sampled from these landmarks, then the number of them can be reduced without much

loss of accuracy. Besides, it is easier to record the locations of these landmarks, and it

can reduce the workload of collecting reference points. Further work should be finding

these special locations in a given environment.
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4.5 The number of reference points (anchor observations)

Reference points can provide a lot of physical information that can restrict the

other points, but using too many of them is still time-consuming and labor-intensive.

In Hanghau shopping mall, if the reference points are sampled per 5m, then there will

be around 70 reference points, which is 4% of the training data. A better approach

is to use less reference points and achieve the same performance, which is left for the

future work.

4.6 Relative distance or absolute location

As mentioned above, the collection of reference points is inconvenient unless the

number of reference points can be reduced to a small value. Besides, collecting reference

points requires a map as prior knowledge, since it shows the absolute location of them

in a map coordinate system. But in reality, the relative distance between two points

are easier to get. PDR (pedestrian dead rocking) is a movement estimation method

that can recover the user path based on IMU sensors, and it has been well studied in

the past few years and can estimate the relative position with a moderate error. If this

information is utilized, then the number of reference points can be further reduced.

4.7 Multi-floor and multi-building fingerprinting

The ultimate goal for fingerprinting is to build a complete fingerprint database not

only in a single floor but also in multi-floor buildings and multi-building communities.

When the fingerprinting can be well performed in the single floor, then the next step

is to extend it to neighboring floors. We did some experiments on the separation of

floors, and the results showed that it can well separate the floors who are not adjacent

and the areas who are not adjacent, but the same regions in neighboring floors are hard

to differentiate. Future work on multi-floor fingerprinting should analyze the signal

difference in neighboring floors or model the signal transitions from one floor to its

adjacent floor.
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5 Conclusion

Indoor WiFi fingerprinting is essential and useful for various smart city applications,

such as localization services and WiFi heatmap monitoring. Traditional fingerprinting

method requires hiring professional surveyors to conduct site survey, which is labori-

ous and time consuming. As an efficient alternative, crowdsensed WiFi fingerprinting

methods emerged and their goal is to use additional information to reduce the workload

of site survey. Recent works usually utilize IMUs to get user movements as constraints,

or model the relationship between RSSI and distance as a constraint. However, they

either require temporal information from users or use an inaccurate model. A third

way is to use manifold alignment to match signals to the physical locations with sparse

reference points. Their performance is excellent, but the model is hard to extend when

new data comes in. Besides, it cannot handle the missing RSSI values very well. Our

proposed method can solve this by creating an AP-observation network and use network

embedding to generate embedded vectors for all WiFi signals. A map matching system

then use sparse location labels and the neighboring information among the embedded

vectors to match them to the physical space. Extensive experiments are conducted in

one shopping mall, and various evaluation methods are applied to show the performance

of the algorithm in different aspects. Due to limit of time, there are still some questions

that remains unsolved and are left for future works.
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7 Appendix A: Division of work

The whole work can be divided into the following subtasks:

Done(D):

1. Find related works

2. Collect data on several sites

3. Design the algorithm

4. Proposal report

5. Implement the demo program

6. Implement the full program

7. Test the algorithm

8. Determine comparison schemes

9. Implement evaluation code

10. Progress report

11. Final report

Future(F):

1. Optimize proposed method

2. Conduct more experiments

3. Video

4. Thesis defense
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8 Appendix B: GANTT Chart

According to the schedule from CSE department and the current progress of this

work, the GANTT chart of this FYT is planned as follows (task number is the same as

above):

Aug Sept Oct Nov Dec Jan Feb Mar Apr

D1 X X X X

D2 X X

D3 X X X X X X

D4 X X

D5 X X X

D6 X X X X X

D7 X X X X X

D8 X X X

D9 X X X

D10 X X

D11 X X
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9 Appendix C: Required Hardware & Software

9.1 Hardware

Development and testing environment: a Linux server with at least one Nvidia GPU

Data collection environment: several Android phones with basic Wi-Fi functions

9.2 Software

For development and testing, we will make use of the following softwares:

Software Usage

Python3 Programming language

Tensorflow Machine learning platform

Jupyter notebook For creating interactive result and visualization

Android Studio For developing Android APP that can be used for data collection

For collecting data on smartphone, we need an APP that could conduct Wifi signal

collection and pre-conducted site survey.
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10 Appendix D: Monthly work summary

10.1 Monthly report of July 2019

Find and read paper related to Wi-Fi indoor localization I searched some

papers related to Wi-Fi indoor localization and get a general picture of the field of it.

Set up programming environments on both laptop and server I installed

required software and other useful packages on both my laptop and the server, and

tested some simple code on them to make sure the installations are successful.

Brainstorm the goal of this work I met professor Chan several times to discuss

about my work and get some advice. Between these meetings, I also had a close contact

with Steve who is the PHD student of the professor. Steve and I discussed about a few

possible directions of my work, and help me shape the roadmap of what I am going to

work on.

10.2 Monthly report of August 2019

Design simulation for indoor environment I designed a simulation system which

can produce data collection in the virtual environment. The initial purpose of this

system is to validate if the proposed work is achievable, but later it was discarded since

I got previously collected data from the campus and there is no need to do simulation.

Find and read paper related to network embedding After some discussions

with professor Chan and Steve, I decided to try on network embedding method first

and see the outcome. I searched for some highly-cited paper about this topic, and have

a close look at it.

Search for opensource code from existing works After I read the papers, I

looked for code of these works since most of them have opensource code. When I got

the code, I tested them using corresponding example datasets and fix some bugs for

them.

Preprocess the previous data into the format that can be fed into the code

Since the input in the code I found has a specific format, I had to convert collected data
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into that format. Besides, to make further operations easier, I designed some classes

that contain useful information in subsequent tasks.

Search for algorithms that can visualize high-dimensional data The output

of network embedding is a set of high-dimensional points which cannot be displayed

directly on the screen. To visualize them, a method called manifold learning is used to

reduce the dimension of data. I searched for several manifold learning algorithms and

determined which one to use.

10.3 Monthly report of September 2019

Find and read paper related to graph neural network Learning of graph has

been developing quickly these years. When graph learning is combined with deep neural

network, a new method called graph neural network emerges. I found some related

works in this field and check whether they can be used in my work.

Search for clustering algorithm To split the observation points without knowing

the true position, clustering method was the solution. I searched for some popular

clustering algorithms, analyze the limitations and strengths for them and choose the

one which fulfill the requirement of this work.

Implement the basic algorithms that can map the observation into real-world

coordinates I borrowed the concept of spring and potential energy from physics

and use it to constrain the relative position between points. After I implement this

algorithm, I tested it on a small dataset and see its performance.

10.4 Monthly report of October 2019

Test existing network embedding algorithm I found a famous network embed-

ding algorithm, LINE, and its opensource code. I found some small datasets, and

tested the performance of LINE using them. Graph neural network was discarded

because LINE can run well enough.

Update the design and objective of the FYT Since the design went further, the

scope of this work changed. A fusion framework is being considered as the next step
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for this project. After the original work was done, other sensors’ signals will be fused

into the existing algorithm to improve the reliability.

Design a new network embedding algorithm There are still some limitations

of LINE, since it cannot work well on the global structure. I started to design a new

algorithm that based on LINE and works well in global view.

10.5 Monthly report of November 2019

Improve the network embedding algorithm A new network embedding algo-

rithm was designed to improve the performance of LINE. It is expected to be more

accurate in preserving the global structure of the network.

Discard the multi-story classification Since experiments worked bad for floor

classification, this part was put aside for now. If time allows, the classification part

should resume immediately.

Design the experiments for evaluation Various evaluation criteria were designed

to measure the overall performance of the algorithm, including the positioning accuracy,

the robustness of the algorithm, etc. The experiments are expected to be taken in

December.

10.6 Monthly report of December 2019

Conduct experiments on the program Some experiments were done and eval-

uation showed that the performance was not acceptable. Therefore, the design was

discarded, and a new design was required.

Update the design of network embedding algorithm Since the experiments

showed that the design is problematic, it was updated with depth first search technique.

More experiments were expected to finish in January.

Search for related works More related works were found and studied. Some inspi-

rations were gained from these works. They are useful for further design.
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10.7 Monthly report of January 2020

Optimize the program It was found that the speed of the original algorithm could

be significantly slowed down when the data size became larger. As a result, the code

was optimized using matrix multiplication instead of loops.

Conduct experiments on the program After the algorithm was optimized, some

experiments were taken again to test its performance. The results showed that this

algorithm still needs improving, but it is better than before.

10.8 Monthly report of February 2020

Redefine the problem statement After the work over a semester, I reorganize my

thoughts as well as the problem formulation of my FYT. Now it’s much clearer and

more achievable.

Refine the evaluation criteria After the algorithm changed, the evaluation criteria

also adapted to the new algorithm. It considers the environment conditions and is

expected to give a better description about how good the algorithm is.

Search for the comparison schemes As the core development of the algorithm

finished, the process to find some comparison schemes started. It is expected that there

should be one or two related works as the comparison schemes.

10.9 Monthly report of March 2020

Implement the comparison methods The selected comparison methods are imple-

mented in python, and they are tested to make sure they perform correctly. Experiment

results of a small dataset is tested by the methods.

Implement the evaluation programs The full set of evaluation methods are pro-

grammed as a series of functions. To make the evaluation more convenient, another

program is written to preprocess the experiment outputs. Then the evaluation codes

will directly use the preprocessed data for plotting.
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Conduct extensive experiments Since the experiment procedure is almost final-

ized, a full set of experiments started to run on the server. To speed up the experiments,

the program is executed several times with different hyperparameter values.

10.10 Monthly report of April 2020

Conduct full evaluation The experiment results are obtained, and a full set of

evaluations are conducted on the results. The evaluations can give the basic statistics

of the error, and visualize them using CDF or box plot.

Prepare the final report At the same time, the final report is being drafted with

more detailed explanation of the algorithm and the evaluation criteria. Evaluation

results are comprehensively analyzed. Because there are still some questions that cannot

be solved by the submission deadline, I put them in the discussion section for future

works.
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