
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

QUANTIZED NEURAL NETWORKS FOR
6D POSE ESTIMATION

by Ziqi Zhao

Saqib Javed
Assistant

Dr. Mathieu Salzmann
Thesis Supervisor

A thesis submitted in fulfillment of the requirements
for the degree of Master of Computer Science

At

Computer Vision Laboratory
School of Computer and Communication Sciences

EPFL

MASTER PROJECT REPORT

30th December 2022

ACKNOWLEDGEMENTS

First of all, I would like to thank Mr. Saqib Javed for offering this master project and giving me suggestions
and guidance throughout the whole project. All our meetings and discussions are quite beneficial and
valuable to my research. I would also like to thank CVLab for providing the necessary computational
resources for my experiments. I could hardly conduct my master project without them.

I especially want to acknowledge Dr. Mathieu Salzmann for his help during my research. He is the
supervisor of my master project and also one of the supervisors of my first semester project. With one
and half years of effort, the work of that semester project was extended and published on NeurIPS 2022.
That project cultivated my research interests in network compression and adversarial robustness. It also
motivated me to work on my master project which is also related to network compression.

Last but not least, I am grateful for the firm support from my family. They financed my whole master
studies and helped me overcome the hardest time during my research. A sincere credit is also given to my
friends, who also comforted me and brightened my daily life.

Lausanne, 30th December 2022 Ziqi Zhao

2

ABSTRACT

6D pose estimation is fundamental in many computer vision tasks such as augmented reality and satellite
on-orbit services. Although the latest models can achieve promising accuracy to identify objects’ poses,
their heavy models are computationally inefficient and infeasible to be deployed on edge devices. Network
quantization can solve this problem by compressing floating-point weights and activations to a finite
set of values that can be expressed with lower bitwidths. At the same time, it will preserve the model’s
performance as much as possible. Network quantization has been widely studied on image classification
tasks, yet little attention is paid to other applications, for example, 6D pose estimation. Since networks
for 6D pose estimation are more modular than those for image classification, existing quantization
algorithms might perform differently on them. Besides, pose estimation is a more challenging task than
image classification because the model not only detects the object class but also estimates its 6D pose
information. This project intends to study network quantization in the field of 6D pose estimation and
explore how state-of-the-art quantization algorithms for image classification would perform in 6D pose
estimation. Based on preliminary evaluations of the sensitivities of network modules, we find that the
backbones in the networks are less resistant to quantization than other components. We then evaluate the
mixed-precision quantization of a state-of-the-art method, HAWQ, and reveal that in a finer granularity,
the layers at both ends of the network are usually more sensitive to quantization. We apply HAWQ to
several 6D pose estimation networks using different mixed-precision quantization plans and discover that
the performance degradation is more severe in 6D pose estimation. By using a multi-stage quantization
strategy, we could achieve better performance on several datasets. Our experiments provide a deeper
understanding of quantization and shed some light on a better quantization scheme for 6D pose estimation.

3

Contents

Acknowledgements 2

Abstract 3

1 Introduction 5

2 Related Works 7
2.1 6D Pose Estimation . 7

2.1.1 Dual-stage Pose Estimation . 7
2.1.2 Single-stage Pose Estimation . 7

2.2 Network Quantization . 8
2.2.1 Uniform and Non-Uniform Quantization . 8
2.2.2 QAT and PTQ . 9
2.2.3 Mixed-Precision Quantization . 9

3 Problem Statement and Methods 10
3.1 6D Pose Estimation . 10

3.1.1 Preliminaries . 10
3.1.2 WDR and CA-SpaceNet . 10
3.1.3 ZebraPose . 12

3.2 Quantization . 13
3.2.1 Preliminaries . 13
3.2.2 Module-based Mixed-Precision Quantization 15
3.2.3 Mixed-Precision Quantization in HAWQ . 15
3.2.4 Multi-Stage Quantization . 16

4 Experiments 18
4.1 Experiment Setup . 18

4.1.1 Dataset . 18
4.1.2 Training Setup . 18
4.1.3 Evaluation Metrics . 18

4.2 Mixed-Precision Quantization . 19
4.2.1 Analysis of HAWQ MPQ Plans . 19
4.2.2 Performance on SwissCube . 22
4.2.3 Performance on LMO . 23

4.3 Multi-Stage Quantization . 24

5 Conclusion 27

References 28

4

CHAPTER 1

INTRODUCTION

Estimating object pose in images is fundamental to several vision-based tasks, including augmented
reality [1], object grasping in robotic applications [2] and spatial services [3], [4]. Many augmented
reality applications require high-precision pose information of objects in order to align the real world and
virtual world; to grasp an object and manipulate it, a robotic arm needs to know the 6DoF information of
that object before planning its movement; hundreds of kilometers above land, a reliable pose estimation
algorithm can help spacecraft capture off-service satellites and clear the earth’s orbit. Modern 6D
pose estimation algorithms utilize neural networks to obtain better results than conventional matching
algorithms. With the development of neural networks, the accuracy of 6D pose estimation keeps improving,
whereas the network structures grow increasingly complicated and enormous. The powerful models
require more computational power and more memory space, so it hinders the deployment on edge devices
such as phones and spacecraft.

Network quantization is one of the popular methods to compress the model with little performance
degradation. It restricts the model weights and/or activations within a small set of discrete values and
minimizes the accuracy degradation simultaneously. By proper hardware implementation design, the
compressed model can be further accelerated by TVM [5]. Quantization of neural networks has been well
studied for image classification over the years and has shown its effectiveness [6]–[11], yet little attention
is paid to 6D pose estimation. The networks for 6D pose estimation usually consist of a pre-trained
backbone and a decoder (e.g., FPN [12], ASPP [13], etc.), which is more modular than those for image
classification. The performance of network quantization under this architectural difference is hardly
known and needs to be revealed. In addition, 6D pose estimation usually contains the classification of
objects, making it a more challenging task than image classification.

In this project, we apply one state-of-the-art quantization algorithm, HAWQ [14]–[16], to multiple 6D
pose estimation networks [3], [4], [17] and explore the sensitivity of different parts of the network and how
they perform against different quantization levels. An initial evaluation demonstrates that the backbones
are usually the most sensitive ones in 6D pose estimation models. We then propose a module-based
mixed-precision quantization strategy to set different quantization levels to different modules. After
analyzing HAWQ’s mixed-precision quantization plan, we find that layers at both ends of the network
are more sensitive to quantization than others. To stabilize the quantization process, we also propose to
quantize the network in a multi-stage manner, namely quantizing part of the network in each stage, and
fine-tuning the model after all layers have been quantized. Experiments show that multi-stage quantization
might help the model find better solutions and preserve more performance after quantization. Although
current experiment results are not strong enough to prove the feasibility of multi-stage quantization, we
think that our findings suggest several directions for future work and that there are still gaps to fill in the
field of quantization for 6D pose estimation.

5

CHAPTER 1 – INTRODUCTION

The contributions of our work include the following aspects:

• We evaluate the Hessian-trace-based sensitivity of layers in state-of-the-art 6D pose estimation
networks and find that in 6D pose estimation networks, some layers at the beginning or at the end
are more sensitive to quantization, while other layers can tolerate more against quantization.

• We propose a multi-stage quantization strategy that quantizes part of the network at each quantization
stage instead of quantizing the whole network at once.

• Our layerwise quantization strategy is capable of achieving better performance than a naive quantiz-
ation that quantizes the network at once.

This report is organized as follows: we first review the literature on 6D pose estimation and network
quantization in Chapter 2, then introduce the basics of quantization and all the quantization and 6D pose
estimation algorithms we use in this project in Chapter 3. Our experiments setup and results will be
demonstrated in Chapter 4. We conclude our report in Chapter 5.

6

CHAPTER 2

RELATED WORKS

In this chapter, we first review the literature on 6D pose estimation, including both dual-stage and
single-stage methods. Then we introduce recent advances in network quantization. Specifically, we
summarize works that focus on uniform and non-uniform quantization, quantization-aware training (QAT),
post-training quantization (PTQ), and mixed-precision quantization (MPQ).

2.1 6D Pose Estimation
The latest 6D pose estimation methods can be classified into dual-stage ones and single-stage ones, based
on whether the pose information is directly obtained from the networks. In particular, dual-stage 6D pose
estimation algorithms first establish 3D-to-2D correspondence using a neural network, then use a PnP
solver to estimate object pose; a single-stage pose estimation algorithm regresses the object pose in an
end-to-end manner. We will review their recent advances below.

2.1.1 Dual-stage Pose Estimation
Recent dual-stage pose estimation methods aim to provide more reliable 3D-to-2D correspondences or
additional uncertainty of the correspondences to improve the performance of the PnP solver. PVNet [18]
regressed keypoint-pointing vectors for each pixel and voted for keypoint locations using these vectors.
An uncertainty-aware PnP solver was utilized to account for uncertainties in the estimated 2D keypoint
coordinates. SegDriven [19] proposed a segmentation-driven method to predict 3D-to-2D correspondences
with confidence values. It showed that the combination of several local predictors can improve the
robustness of correspondences. SurfEmb [20] adopted contrastive learning to establish continuous
distributions of 3D-to-2D correspondences. Specifically, the model is trained to maximize the score of
the correct pose among all pose hypotheses predicted by PnP-RANSAC. ZebraPose [17] designed an
encoding method that represents hierarchical binary grouping information for object surface vertices. It
also proposed a coarse to fine-grained training strategy to automatically update predicted encodings and
focus on different granularities during different training phases.

2.1.2 Single-stage Pose Estimation
Compared with dual-stage pose estimation, a single-stage pose estimation algorithm can achieve higher
efficiency and provide an end-to-end way to train the model and get pose estimations directly. Earlier
works such as PoseCNN [21] designed a network that solves the semantic labeling, translation estimation,

7

CHAPTER 2 – RELATED WORKS

and rotation regression simultaneously. Its novel loss function can also handle symmetry objects. However,
earlier works could not outperform dual-stage pose estimation methods. SO-Pose [22] investigated this
issue and found that one predicted correspondence might match several 6D pose estimations with similar
errors, resulting in a sub-optimal solution. To overcome this problem, SO-Pose introduced self-occlusion
information of objects and used the consistency between this information and predicted correspondence to
select more accurate pose information. WDR [4] proposed a new network that can provide reliable pose
estimations under extensive object depth ranges, which is crucial for satellite on-orbit services. During the
inference phase, the predicted pose can be estimated by either a RANSAC-PnP solver or a learning-based
solver [23]. CA-SpaceNet [3] extended WDR and adopted counterfactual analysis to remove the effect
of the complicated background. In addition, it quantized the network and deployed it on FPGA. This
reduced the inference latency, hence more hardware-friendly for deployment.

2.2 Network Quantization
Network quantization methods can be categorized by several criteria. From the perspective of quant-
izers, namely quantization functions, they can be divided into uniform quantization and non-uniform
quantization; from the perspective of the quantization workload, there are quantization-aware training
(QAT) and post-training quantization (PTQ) algorithms. In addition, some methods apply different
bitwidths to different layers to make quantization adaptive to layer sensitivity. These methods are called
mixed-precision quantization (MPQ). In this section, we will review recent advances in the above topics.
A more comprehensive classification of network quantization can be found in [11].

2.2.1 Uniform and Non-Uniform Quantization
To quantize the weights and activations in a neural network, a simple function is a linear function that
maps floating-point values to a finite set of values. This is called uniform quantization because both
quantization steps and quantized values are uniformly distributed. It is simple to use and efficient to be
deployed on the hardware, so it is commonly used in many works. BinaryConnect [24] was the initial work
to quantize the weights to {-1, +1}, and it used the sign function to compress the weights. BinaryNet [25]
extended this work and quantized both weights and activations. To further speed up the training process,
DoReFa-Net [6] was proposed to support gradient quantization. The quantizers in these methods are
simple linear quantizers, which can be formulated as Equation 3.13. Their scaling factors and zero points
are fixed during training and not updated. A recent work LSQ-Net [26] made the scaling factors trainable
and update them together with network parameters during quantization. LSQ+ [27] further made the zero
points learnable to support quantization for negative activation values from Swish and other activation
functions. Though linear quantizers are simple to learn, one drawback is that they might lose information
when quantizing values from a bell-shaped distribution.

Some works [10], [28] proposed to learn the dynamics of the distribution and adjust the quantization range
of each quantization level accordingly. Specifically, [10] learned the quantization ranges by extending
straight-through estimator (STE) [29] to support the gradient of quantization ranges. This method can
better capture the information of input values than uniform quantization and is also easier to be deployed
on the hardware than non-uniform quantization. However, the trainable quantization ranges introduce
a huge amount of computational cost and make it impossible to train on one GPU. [28] used a lookup
table as a quantizer and formulated the quantization process as a lookup table learning process. It used
temperatured softmax distribution to make the lookup table learnable, then introduced several strategies to
speed up the convergence during training.

On the contrary, a non-uniform quantization function will map the input values to non-uniformly spaced

8

CHAPTER 2 – RELATED WORKS

discrete values. For example, [30] used logarithmic distributions to represent values using power-of-two
values; [31] further proposed an additive-of-two quantization to represent full-precision values using a
sum of powers-of-two values. Due to the difficulty of hardware deployment, non-uniform quantization is
less popular than uniform quantization and can only be accelerated on specially-designed hardware.

2.2.2 QAT and PTQ
Given a pre-trained model, we can either quantize the network and also update network parameters, or
only do quantization without further fine-tuning. The former is Quantization-Aware Training (QAT),
while the latter is Post-Training Quantization (PTQ). QAT methods [10], [14]–[16], [26]–[28], [32] can
improve the performance of quantized networks, whereas they require to re-train the parameters of the
network for many epochs and introduce much computational cost.

PTQ methods determine the quantized network parameters without re-training, so they are more efficient
than QAT methods. As a trade-off, the compressed models from PTQ usually perform worse than those
obtained from QAT. AdaRound [9] is one of the recent PTQ algorithms. It showed that a simple round-to-
nearest quantizer can lead to sub-optimal results, and it formulated the rounding problem as a quadratic
unconstrained binary optimization problem to reduce task loss.

2.2.3 Mixed-Precision Quantization
Based on the observation that different layers of the network have different sensitivity to quantization,
setting different bitwidths for the layers is an effective approach to reduce performance degradation.
Since modern neural networks are becoming deeper, the search space for layer bitwidths is vast and it is
impossible to manually find the optimal policy. To overcome this issue, mixed-precision quantization
(MPQ) was studied to allow an automatic process to search for the optimal bitwidths for network layers.
HAQ [32] trained a reinforcement learning agent to find the optimal quantization policy under multiple
constraints such as model size, inference latency, and energy. Though it can perform better than many
methods under the same constraints, it is time-consuming for the RL agent to find the optimal policy.

HAWQ [14]–[16] adopted Hessian-based sensitivity to select the bitwidth. In HAWQ-v1 [14], the authors
proposed to use Hessian eigenvalues of each layer to determine its bitwidth. The quantization process for
the layers will be determined by the product of Hessian eigenvalues and the quantization error of each
layer. One limitation of HAWQ-v1 is that although the layer with larger Hessian eigenvalues should have
a larger bitwidth, the choice of that bitwidth is still made by domain experts. HAWQ-v2 [15] solved this
problem by introducing the Pareto Frontier approach. It first replaced Hessian eigenvalues with average
Hessian trace which is a better metric for sensitivity, then minimized the sum of products between Hessian
trace and quantization error for each layer. Then given a target model size, HAWQ-v2 will automatically
find the optimal quantization policy using the Pareto Frontier approach. HAWQ-v3 [16] extended this idea,
introduced additional constraints (inference latency, bit operations), and formulated the search of bitwidths
as an integer linear programming problem. After calculating the Hessian trace and quantization errors,
the searching process can be finished within seconds, which is more efficient than HAQ and previous
versions of HAWQ. Besides, it used dyadic numbers to enable integer-only inference where only integer
addition, multiplication, and bit-shifting are performed. The quantized models from HAWQ-v3 are more
hardware-friendly for deployment.

9

CHAPTER 3

PROBLEM STATEMENT AND METHODS

This chapter will review the state-of-the-art algorithms used in this project. Specifically, we will first
summarize several 6D pose estimation methods [3], [4], [17] used in our experiments. Then we will
introduce the basics of quantization, followed by the quantization algorithm HAWQ [14]–[16].

3.1 6D Pose Estimation
3.1.1 Preliminaries
For a given image Im with a target object, a 6D pose estimation algorithm f parameterized by θ can
estimate a 3× 3 rotation matrix R and a 3× 1 translation vector T

R, T = f(Im, θ) (3.1)

such that a 3D coordinate P = (Px, Py, Pz)
T in the object frame can be mapped into the camera frame

u = (ux, uy)
T . Given the camera’s intrinsic matrix K, this mapping can be formulated as

λ

 ux
uy
1

 = K(RP + T) (3.2)

where λ is a scaling factor.

3.1.2 WDR and CA-SpaceNet
WDR [4] used a DarkNet-53 [33] as the backbone, then appended a Feature Pyramid Network (FPN) [12]
containing K feature maps with increasing receptive fields. These feature maps will be fed to the network
head to generate C × (2× 8 + 1) vectors indicating 8 2D offsets and 1 objectness indicator for C object
classes. The objective function of WDR includes the focal loss [34] Lobj and a pose regression loss Lreg.
Specifically, given the network output probability p and the ground truth y, the focal loss is defined as:

Lobj(p, y) =

{
−α(1− p)γ log (p), if y = 1

−(1− α)pγ log (1− p), otherwise
(3.3)

10

CHAPTER 3 – PROBLEM STATEMENT AND METHODS

α can alleviate the problem of class imbalance, while γ ≥ 0, the focusing parameter, can help the model
focus more on hard examples and less on easier ones.

Given the 3D re-projection error ei for the i-th image, the pose regression loss is defined as the sum of the
smoothed L1 norm of the errors:

Lreg =
N∑
i=1

sl1(ei) (3.4)

WDR used the sum of Lobj and Lreg among all feature maps as the overall training loss:

L =
K∑
k=1

(L(k)obj + L
(k)
reg) (3.5)

Figure 3.1: Overview of CA-SpaceNet [3]. The figure is extracted from the original paper.

CA-SpaceNet [3] extended WDR and proposed to use the principles from counterfactual analysis to train
the model. An overview of CA-SpaceNet is shown in Figure 3.1. It contains three paths: the factual path
which is the same as WDR, the counterfactual path containing the DarkNet-53 backbone and an FPN, and
the pseudo-counterfactual path with only one FPN. The factual path takes raw images as input, whereas
the counterfactual path takes images that only contain the background without the object. The goal of the
counterfactual path is to learn the side effect of background and help the pseudo-counterfactual path learn
this information. To achieve that, the authors introduced a similarity loss between the feature maps {F c

k},
{F pc

k } of two FPNs in the counterfactual path and the pseudo-counterfactual path:

Lsim =
K∑
k=1

sl1(F
pc
k − F c

k) (3.6)

The overall loss function is the weighted sum of Lobj , Lreg and Lsim.

During inference, the counterfactual path will be removed, the pseudo-counterfactual path will be used to
evaluate the side effect and remove it from the factual path.

11

CHAPTER 3 – PROBLEM STATEMENT AND METHODS

Figure 3.2: ZebraPose [17] hierarchically split object surface into binary groups. Then the one-to-one
correspondence between object vertices and binary codes will be established and stored in a lookup table.
The figure is extracted from the original paper.

3.1.3 ZebraPose
Instead of directly using 3D coordinates of object vertices as ground truth, ZebraPose [17] used a discrete
descriptor that can efficiently encode the object vertices to binary codes in a hierarchical way. As
Figure 3.2 demonstrated, ZebraPose hierarchically split the object vertices into binary groups and built a
lookup table to store this code-to-vertex correspondence. It applied a modified version of DeepLabv3 [13]
that added skipped connections and selected ResNet34 [35] as the backbone. The model will output a
mask and a binary code vector for each pixel of the input image. Binary code vectors for pixels within the
image masks will be used for training and inference.

There are two types of loss functions in ZebraPose: mask loss Lmask and hierarchical loss Lhier. The
former is defined as the L1 loss between the generated masks and ground truth ones. The latter can be
computed by the weighted sum of Hamming distance between predicted codes and the ground truth.
Specifically, given the predicted code probability p̂ ∈ Rd, the predicted code b̂ can be calculated by
rounding p̂. To compute the Hamming distance between p̂ and the ground truth b, one common practice is
to apply a binary cross-entropy function before the calculation

Hamm(b, p̂) =
d∑

i=1

bi log p̂i + (1− bi) log(1− p̂i) (3.7)

Since each binary code vector encodes the object surface with different granularity, it is important to
adjust their weights during training. ZebraPose defined a histogram for binary codes at each training step t

Hi(t) = avg(λ(bti − b̂i
t
) + (1− λ)(bt−1

i − b̂i
t−1

)) (3.8)

Then a hierarchical loss is defined as

Lhier(t) =
d∑

i=1

wi(t) ·Hamm(bi, p̂i) (3.9)

12

CHAPTER 3 – PROBLEM STATEMENT AND METHODS

where wi(t) = exp(σ ·min(Hi(t), 0.5−Hi(t))). The overall loss function is the weighted sum of two
loss functions

L = Lmask + α · Lhier (3.10)

3.2 Quantization
In this section, we will first review the basics of quantization, then introduce HAWQ in detail.

3.2.1 Preliminaries
For a supervised training process of a neural network parameterized by θ on the datasetD = {(xi, yi)}Ni=1,
the objective should be:

min
θ

1

N

N∑
i=1

L(xi, yi, θ) (3.11)

Network quantization aims to compress the parameters θ under certain constraints such as model size and
inference latency, and at the same time preserve as much accuracy as possible.

Generally, a quantizer is a function that maps floating-point numbers r into a finite set of values:

Q(r) = qi, if r ∈ [si, si+1) (3.12)

where {si} are quantization steps, and {qi} are quantization levels. For uniform quantization, a simple
linear quantizer is defined as follows:

Q(r) = round(clamp(
r

s
, qmin, qmax))− z (3.13)

r = r · (s+ z) (3.14)

Here, z is the zero-point, s is the scaling factor, qmin and qmax define the clipping range. Given these
parameters, the approximation of r after quantization can be recovered by Equation 3.14. This recovery
process is called dequantization.

The way to determine these parameters varies in different quantization algorithms. HAWQ uses symmetric
quantization for weights, where the upper and lower clipping bounds are qmax = max(|rmax|, |rmin|),
qmin = −qmax. Given the target bitwidth k, there are 2k − 1 possible values after quantization, ranging in
[1−2k−1, 2k−1−1]. The scaling factor is then determined by s = qmax

2k−1−1
. The zero point z in symmetric

quantization is set to zero.

Non-negative activations from ReLU can also be compressed by symmetric quantization when the target
bitwidth is large. However, under extreme quantization (e.g. 2 bits), asymmetric quantization will provide
a larger set of quantized values. In this case, s will become rmax−rmin

2k−1
, z = − rmin

s = − rmin(2
k−1)

rmax−rmin
. Due

to the fact that activations are highly sensitive to quantization, we keep them at either 8 bits or 16 bits and
only use symmetric quantization for them.

13

CHAPTER 3 – PROBLEM STATEMENT AND METHODS

To remove floating-point operations and only use integer arithmetic in the inference phase, HAWQ
pre-calculated the scaling factors of layers and used dyadic numbers to convert them into bit-shifting
operations. For example, consider a layer with input h and weight w, followed by a ReLU activation
function. Both of them are quantized to shqh and swqw, then the layer will output

a = shsw(qh ∗ qw) (3.15)

where “*” denotes matrix multiplication or convolution. Denote the scaling factor of activation as sa, then
the quantized activation will become

qa = round(
a

sa
) = round(

shsw
sa

(qh ∗ qw)) (3.16)

qh ∗ qw can be carried out by integer multiplication and addition. However, calculating shsw
sa

directly
requires floating-point operations. To convert this to integer arithmetic, HAWQ represents it in a dyadic
number format:

DN(
shsw
sa

) =
b

2c
(3.17)

Then the scaling factor can be calculated by shifting c bits of b.

For layers with residual connection (such as ResNet backbones), denote the output of the main branch
as m = smqm and the output of the residual connection as r = srqr, the quantized output after merging
both branches will be

qa = DN(
sm
sa

)qm +DN(
sr
sa

)qr (3.18)

HAWQ also modified the BN folding [36] so that the parameters in the batch normalization layer and
running statistics are all fixed during quantization. To be precise, the BN-folded convolution will be

Conv_BN(h,w) = β
w ∗ h− µ

σ
+ γ

=
β

σ
w ∗ h+ (γ − µ

σ
)

= w ∗ h+ b (3.19)

Quantization will be performed on w and b. For simplicity, b will use the scaling factor as swsh so that
the quantized bias can be added directly 1

qa = DN(
swsh
sa

)(qw ∗ qh + qb) (3.20)

1Although HAWQ preserved b to be 32 bits regardless of the bitwidth of w, we chose to quantize b to the same bitwidth as w.
This introduced additional performance degradation.

14

CHAPTER 3 – PROBLEM STATEMENT AND METHODS

3.2.2 Module-based Mixed-Precision Quantization
Networks for 6D pose estimation are usually modular, and each module has its own objective. For example,
the backbone in the model usually extracts features from the image, while a decoder will take features
from multiple receptive fields and generate the pose-related information. Based on this observation, we
could treat each module as a whole and set different quantization bits for different modules. We name this
method as Module-based Mixed-Precision Quantization, or Modular-based MPQ. Table 3.1 shows an
initial evaluation of the sensitivity of different modules in ZebraPose. When quantizing the decoder to 4
bits, the average performance degradation is 11%, while this value is 33% when quantizing the backbone
to 4 bits. Therefore, a module-baed MPQ plan should assign larger bitwidths to the backbone and smaller
bitwidths to the decoder.

Object Name Baseline 4 bits Decoder 4 bits Backbone
ape 0.61 0.52 0.30
can 0.95 0.92 0.85
cat 0.60 0.48 0.37

driller 0.95 0.91 0.23
duck 0.58 0.21 0.27

eggbox 0.64 0.66 0.31
glue 0.85 0.81 0.75

holepuncher 0.73 0.49 0.18
Average 0.74 0.63 0.41

Table 3.1: Performance of ZebraPose models on a partial LMO dataset [37]. All the results are ADI-0.1d.
The activations are all quantized to 16 bits.

3.2.3 Mixed-Precision Quantization in HAWQ
HAWQ provides another way of generating MPQ plans that consider Hessian-related sensitivity and other
hardware constraints such as inference latency, model size, and bit operations 2. HAWQ-v2 [15] proved
that the average Hessian trace of weights is a good metric to evaluate their sensitivity to perturbations. Since
computing the hessian matrix is a computation-heavy task, HAWQ used the Hutchinson algorithm [38]
to approximate the Hessian trace without explicitly constructing the hessian matrix. Denote the Hessian
matrix as H , and the identity matrix as I . Randomly sample a vector z ∈ Rd whose elements are i.i.d.
and drawn from Gaussian distribution N (0, 1). Then the trace of H can be calculated by

Tr(H) = Tr(HI) = Tr(HE[zzT]) = E[Tr(HzzT)] = E[Tr(zTHz)] (3.21)

After calculated the gradient gw = ∂L
∂w , the multiplication Hz can be obtained without knowing the

hessian:

Hz =
∂gTw
∂w

z =
∂gTw
∂w

z + gTw
∂z

∂w
=

∂gTwz

∂w
(3.22)

Hutchinson algorithm samples multiple zs and calculate the approximation of the Hessian trace as
2We only focus on the latest ideas from HAWQ-v3 [16]. The Hessian eigenvalue in HAWQ-v1 [14] and the Pareto Frontier

approach in HAWQ-v2 [15] will not be discussed in this report.

15

CHAPTER 3 – PROBLEM STATEMENT AND METHODS

Tr(H) ≈ 1

n

n∑
i=1

Tr(zTi Hzi) =
1

n

n∑
i=1

Tr(zTi
∂gTwzi
∂w

) (3.23)

HAWQ further introduced the following metric to determine the overall sensitivity given the quantization
plan {bi}nw

i=1 for nw layers of weights

Ω =

nw∑
i=1

Ωbi
i =

nw∑
i=1

Tr(Hi)∥rbii − wi∥22 (3.24)

where Tr(Hi) is the average hessian trace, rbii is the dequantized weight of wi from bi bits quantization.

The selection of {bi}nw
i=1 is formulated as an integer linear programming (ILP) problem. Under bi bits

quantization, denote the size of a matrix wi as M bi
i , the inference latency as Qbi

i and the bit operations
required for computation as Gbi

i , the ILP can be formulated as follows

Objective: min
{bi}nw

i=1

nw∑
i=1

Tr(Hi)∥rbii − wi∥2 (3.25)

Subject to:
nw∑
i=1

M bi
i ≤ Model Size Limit (3.26)

nw∑
i=1

Gbi
i ≤ BOPs Limit (3.27)

nw∑
i=1

Qbi
i ≤ Latency Limit (3.28)

Gbi
i is calculated the same way as [39], i.e. using total multiply-accumulate operations MACi and the bit

precision of weights wi and activation ai

Gbi
i = bwibaiMACi (3.29)

Given the pre-computed Ωi and the constraints, this ILP can be solved by PuLP3 within seconds.

In this project, we removed the BOPs constraints and latency constraints, and only focus on the model
size constraints for simplicity.

3.2.4 Multi-Stage Quantization
Quantizing the whole network usually suffers from instability. To stabilize the training process and
avoid sub-optimal results, one feasible solution is to quantize the network in several stages instead of
quantizing all the network layers at once. Multi-stage quantization was discussed in HAWQ-v1 [14], but
this technique seems missing in later versions [15], [16]. Besides, little description was provided in the
HAWQ-v1 paper. Based on the conclusion from HAWQ-v1 that layers with larger Ω should be quantized
earlier than those with smaller Ω, we proposed a layerwise quantization strategy.

3Available at: https://github.com/coin-or/pulp

16

https://github.com/coin-or/pulp

CHAPTER 3 – PROBLEM STATEMENT AND METHODS

We show our algorithm in Algorithm 1. In particular, for a model with weights {wi}nw
i=1 in nw layers

trained for M epochs, we leave the last F epochs for fine-tuning stage and divide the remaining training
epochs into nw + 1 equal parts, each with I = (M−F)×B

nw+1 iterations. Then we initialize all the weights
to 32 bits and train for I iterations. After every I iterations, the layer with the largest Ω among the
unquantized ones will be quantized. The learning rate before the fine-tuning stage will be fixed, whereas
in the fine-tuning stage it will be a smaller one. In this project, we choose this learning rate to be 10% of
the previous one.

Another form of multi-stage quantization is modular quantization. Instead of quantizing the network
layer by layer, this method quantizes one module at one time. The modular quantization algorithm in this
project shares the same logic as layerwise quantization, except that the order of quantization is not based
on perturbations Ω but manually chosen.

Note that in this report, we refer “quantization plan” to the choices of bits {bi}nw
i=1 given by the quantization

schemes. Both module-based MPQ and HAWQ’s MPQ will output quantization plans. “Quantization
strategy” refers to the way of quantization given the quantization plans. Layerwise quantization and
modular quantization are both quantization strategies. We denote the quantization strategy that quantizes
the network at once as “naive quantization”. The combination of a quantization plan and a quantization
strategy is called “quantization policy”.

Algorithm 1 Layerwise Quantization

Input: training set D with batch size B, model f with weights {wi}nw
i=1 in nw layers, loss function L,

quantization plan {bwi }
nw
i=1 for weights, perturbations for weights Ω = {Ωi}nw

i=1, activation bits ba, total
epochs M , fine-tuning epochs F , learning rate lr.
Initialization: Set quantization bits for weights to 32 bits, set quantization bits for activations to ba bits.
Sort Ω in descending order, denote the indices of sorted perturbations as I ′ = {ij}nw

j=1.

I ← (M−F)×B
nw+1 // Number of iterations for each quantization stage.

counter← 0
for m = 1, 2, · · · ,M do

if m = M − F then
lr ← 0.1× lr // Adjust the learning rate for the fine-tuning stage.

end if
for b = 1, 2, · · ·B do

counter← counter + 1
if counter mod I = 0 and counter < (M − F)×B then
j ← counter

I
set quantization bit for wij to bwij // Quantize a new layer.

end if
Calculate the gradient g of L on data batch Db and update the weights {wi}nw

i=1.
end for

end for

17

CHAPTER 4

EXPERIMENTS

4.1 Experiment Setup
4.1.1 Dataset
We use Occluded-Linemod(LMO) [37] and SwissCube [4] datasets in our experiments. LMO was created
from Linemod [40]. It contains 8 objects and includes images with heavy object occlusion. To facilitate
the training, physically-based rendering (PBR) [41] images are used together with real images in LMO.
SwissCube contains 50K rendered images for satellites in space. The distance between the satellite and
the camera among images spans a wide range.

4.1.2 Training Setup
Unless specified below, we use the same setup (e.g. dataset splits, hyperparameter values) as ZebraPose,
WDR, and CA-SpaceNet. In terms of the optimizer, ZebraPose uses Adam optimizer, while both WDR
and CA-SpaceNet use SGD.

On SwissCube, WDR models are trained for 30 epochs with batch size 8. Under naive quantization, the
initial learning rate is 0.01 and it drops to 10% after 20 and 25 epochs; under multi-stage quantization,
the initial learning rate is set to 0.001 and drops to 10% in the fine-tuning stage starting from epoch 29.
CA-SpaceNet uses the same setup as WDR, so we omit the details.

On LMO, WDR models are trained for 12 epochs with batch size 8. Under naive quantization, the initial
learning rate is 0.005, and it drops to 10% after every 3 epochs; under multi-stage quantization, the initial
learning rate is set to 0.01 and drops to 10% in the fine-tuning stage starting from epoch 11. ZebraPose
models are trained for 20000 iterations with batch size 16. Under naive quantization, the initial learning
rate is 0.0002, and it drops to 10% after every 5000 iterations; under multi-stage quantization, the initial
learning rate is also set to 0.0002 and drops to 10% in the fine-tuning stage starting from approximately
iteration 19000.

4.1.3 Evaluation Metrics
We evaluate the pose estimation accuracy by commonly-used ADI-0.1d [3], [4], [23]. If the average
distance between the ground truth 3D points and the predicted 3D ones is less than 10% of the object
diameter, it will count as successful. For symmetric objects, the matching between ground truth points

18

CHAPTER 4 – EXPERIMENTS

and predicted points are established to minimize their distance. ADI-0.1d is defined as the success rate
among all the images. All the results in this report are ADI-0.1d accuracy.

4.2 Mixed-Precision Quantization
Our first quantization plan is a module-based MPQ plan. To be precise, we quantize WDR’s backbone
to 8 bits, FPN to 2 bits, and Head to 4 bits. For ZebraPose models, we quantize the backbone to 8 bits
and the decoder to 4 bits. The weight compression ratio (WCR) for them is 4.1x and 4.6x respectively.
Then we use these compression ratios to calculate HAWQ’s model size limit in Equation 3.26 and ran
ILP to find the HAWQ’s MPQ plan. We will first interpret HAWQ’s MPQ plan, then demonstrate the
performance of quantized models.

4.2.1 Analysis of HAWQ MPQ Plans
Although HAWQ uses the total quantization error of the layer for ILP, it might not be a good variable for
evaluation. We demonstrate the difference between the total quantization error ∆b =

∑
i ∥rbi − wi∥22 and

the corresponding averaged values ∆b in Figure 4.1. Some middle layers have higher ∆ because they
have more parameters than other layers. However, we notice that some layers at the beginning and the end
of the network show significantly higher average quantization errors. This is because weights in these
layers have a larger range rmax − rmin, as displayed in Figure 4.2. HAWQ will use a much larger scaling
factor s to quantize these values, increasing quantization errors.

0 10 20 30 40 50 60 70
0.00

0.018b
its

Backbone FPN Head

0 10 20 30 40 50 60 70
Layer Index

0

58b
its

1e 7 Backbone FPN Head

Figure 4.1: Comparison between the average and total quantization error of WDR’s layers. The bitwidth
is set to 8 bits. This pattern is occurring under all quantization bitwidths. ZebraPose also exhibits similar
patterns. Shaded areas represent different modules of the network.

0 10 20 30 40 50 60 70
Layer Index

1

0

1
Backbone FPN Head

Figure 4.2: Weight distributions of layers in pre-trained WDR model.

Figure 4.3 provides a complete view of how average quantization errors change under different quantization

19

CHAPTER 4 – EXPERIMENTS

bitwidths. It can be seen that both WDR and ZebraPose models encounter larger quantization errors in the
first and last few layers. Another observation is that the magnitude of quantization errors under different
bitwidths varies a lot. We present later in Figure 4.4, 4.5 and 4.6 that this magnitude difference will largely
affect the final perturbation Ω in HAWQ’s MPQ plan.

0 10 20 30 40 50 60 70
0.000

0.005

0.010

2b
its

Backbone FPN Head

0 10 20 30 40 50 60 70
0.0000

0.0002

4b
its

Backbone FPN Head

0 10 20 30 40 50 60 70
0

58b
its

1e 7 Backbone FPN Head

0 10 20 30 40 50 60 70
0.0

0.5

1.0

16
bi

ts

1e 11 Backbone FPN Head

0 10 20 30 40 50 60 70
Layer Index

0

2

4

32
bi

ts

1e 17 Backbone FPN Head

0 10 20 30 40
0.000

0.025

0.050

2b
its

Backbone Decoder

0 10 20 30 40
0.000

0.002

4b
its

Backbone Decoder

0 10 20 30 40
0.0

0.5

1.0

8b
its

1e 5 Backbone Decoder

0 10 20 30 40
0

1

16
bi

ts

1e 10 Backbone Decoder

0 10 20 30 40
Layer Index

0.0

0.5

1.0

32
bi

ts

1e 16 Backbone Decoder

Figure 4.3: Average quantization error of layers of WDR (left) and ZebraPose (right) under different
quantization bitwidths. Shaded areas represent different modules of the network.

We plot the average Hessian trace, HAWQ’s MPQ plan, and resulting perturbations of the pre-trained
WDR model in Figure 4.4. The first thing to notice is that most layers near the end of the network have
higher average Hessian traces. These large values together with larger quantization errors induce a loose
quantization level of 16 or 32 bits. Although the average Hessian trace of the first few layers is of small
quantity, HAWQ also selects larger bitwidths for them because they produce large discrepancies after
quantization. For other layers, HAWQ assigns 8 bits to most of them and 4 bits to those with relatively
smaller quantization errors and average Hessian trace. Due to the magnitude difference discussed above,
the resulting perturbation will be higher in layers with smaller bitwidths, and they will be quantized earlier
in multi-stage quantization.

0 10 20 30 40 50 60 70
Layer Index

Backbone FPN Head

4bits 8bits 16bits 32bits

100

101

102

Av
er

ag
e

He
ss

ia
n

Tr
ac

e

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Perturbations

Figure 4.4: Average Hessian trace {Tr(Hi)}, quantization plan {bi} and resulting perturbation {Ωi} for
layers in the WDR network. The target weight compression ratio is 4.1x. Shaded areas represent different
modules of the network.

20

CHAPTER 4 – EXPERIMENTS

CA-SpaceNet has similar patterns to WDR. One difference is that many layers in FPN and FPNpc have
a small average Hessian trace. We show later in Table 4.2 that they are less sensitive than the head under
extreme quantization.

0 10 20 30 40 50 60 70
Layer Index

Backbone FPN FPN_PC Head

2bits 4bits 8bits 16bits

10 1

100

101

102

Av
er

ag
e

He
ss

ia
n

Tr
ac

e

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Perturbations

Figure 4.5: Average Hessian trace {Tr(Hi)}, quantization plan {bi} and resulting perturbation {Ωi} for
layers in the CA-SpaceNet network. The target weight compression ratio is 4.1x. Shaded areas represent
different modules of the network.

The pattern of Hessian trace becomes different in ZebraPose. As Figure 4.6 illustrates, large Hessian
trace values can still be seen in the last few layers, but now this also happens in the first few layers. The
first and last few layers still need to have larger quantization bitwidths. Layer 19-28 demonstrate small
average Hessian trace, so they can be quantized to 4 bits; layer 29-35 has large quantization errors, so
their bitwidths are assigned to 8.

0 10 20 30 40
0

2

4

8b
its

Backbone Decoder

0 10 20 30 40
0.0

0.5

1.0

8b
its

1e 5 Backbone Decoder

0 10 20 30 40
Layer Index

Backbone Decoder

4bits 8bits 16bits 32bits

10 1

100

101

102

Av
er

ag
e

He
ss

ia
n

Tr
ac

e

10 6

10 4

10 2

100

102

Perturbations

Figure 4.6: Top: Average quantization error and total quantization error of ZebraPose under 8 bits. Bottom:
Average Hessian trace {Tr(Hi)}, quantization plan {bi} and resulting perturbation {Ωi} for layers in
the ZebraPose network. The target weight compression ratio is 4.6x. Shaded areas represent different
modules of the network.

21

CHAPTER 4 – EXPERIMENTS

To sum up, HAWQ tends to assign larger bitwidth to the first and last few layers, while there is no specific
tendency for either middle layers or some modules. This is different from our module-based MPQ, which
shows a strong preference to quantize the backbone to larger bits and other modules to smaller bits.

4.2.2 Performance on SwissCube
The performance of quantized WDR models on SwissCube is shown in Table 4.1. “b8f2h4” refers to
the module-based MPQ plan that quantizes the backbone to 8 bits, FPN to 2 bits, and head to 4 bits.
HAWQ’s MPQ plan works better than the module-based one, with around 2% of improvements. It even
performs better when the weight compression ratio is doubled. One reason to account for this is that
HAWQ assigned large bits to the first and last few layers. To validate this idea, we manually fix the last
layer for the module-based MPQ plan and quantize the model. This results in comparable performance to
HAWQ’s MPQ plan. For reference, a simple plan that quantizes all layers to 8 bits performs similarly to
both MPQ plans, suggesting that MPQ plans might not matter much under the current compression ratio.
Further experiments can be carried out under more extreme quantization levels.

Quantization Policy Weight Compression Ratio ADI-0.1d(%)
Baseline 1.0 78.95

8bits 4.0 72.34
b8f2h4 4.1 70.21

b8f2h4 last fixed 4.1 72.64
mixed precision 4.1 72.29
mixed precision 8.2 72.02

Table 4.1: Performance of WDR models on SwissCube dataset. The activations are all quantized to 8 bits.
“b8f2h4” represents the module-based MPQ plan to quantize the backbone to 8 bits, FPN to 2 bits, and
head to 4 bits. “mixed precision” means the MPQ plan given by HAWQ. “last fixed” means excluding the
last layer from quantization. All the models are quantized using the naive quantization strategy.

Quantization Policy ADI-0.1d(%)
Baseline 79.39
FPNf 2bits 78.78
FPNpc 2bits 79.29
Both FPNs 2bits 78.87
Head 2bits 53.38
FPNs and Head 2 bits 44.35
Head 4bits 77.14
FPNs and Head 4 bits 78.32

Table 4.2: Performance of CA-SpaceNet models on SwissCube dataset. The activations are all quantized
to 8 bits. All the models are quantized using the naive quantization strategy.

We do not quantize the whole CA-SpaceNet in our experiments, because this model freezes the parameter
update for its backbone. Therefore, we only quantize its FPNs and head and show the results in Table 4.2.
Both FPNf and FPNpc are less sensitive to extreme quantization. Under 2-bit quantization, the ADI-
0.1d degradation is less than 1%. On the contrary, when quantizing the head to 2 bits, the performance
suffers from a significant reduction of around 26%. This is consistent when our analysis of Figure 4.5.
After increasing the quantization bit of the head to 4 bits, the ADI-0.1d approaches the baseline with
2.25% of performance loss.

22

CHAPTER 4 – EXPERIMENTS

We also quantize both FPNs and the head together to 2 bits and 4 bits. Under 2-bit quantization, the
performance decreases further to 44.35%. Surprisingly, under 4-bit quantization of FPNs and head, the
ADI-0.1d is even larger than only quantizing the head to 4 bits. We plot their learning curves in Figure 4.7
and found that their learning curves are very similar, meaning that there is no significant difference
between the performance of the two quantized models. The same trend happens in 2-bit quantization. One
thing to notice is that the ADI-0.1d is fluctuating even at the end of training. This infers that the current
training method might not be capable of the model to converge well.

5 10 15 20 25 30
Epoch

10

20

30

40

50

60

70

80

AD
I-0

.1
d(

%
)

4bit_fpn_head 4bit_head 2bit_fpn_head 2bit_head

Figure 4.7: Learning curves of 2 and 4-bit quantization for a) both FPNs and Head; b) Head only.

4.2.3 Performance on LMO
Policy WCR Overall ape can cat driller duck eggbox* glue* holepuncher

Baseline 1.0 37.56 14.36 53.85 25.27 59.80 31.41 32.09 59.69 23.97
8bits 4.0 29.83 18.8 39.19 8.34 38.55 21.00 37.36 46.40 29.01

b8f2h4 4.1 16.08 8.80 16.16 7.75 15.98 16.10 22.55 27.24 14.05
b8f2h4-LF 4.1 16.39 11.03 19.06 6.82 18.20 14.52 25.36 29.01 7.11

MP 4.1 27.02 13.33 39.11 11.20 41.52 20.82 26.64 49.94 13.63
MP 8.2 12.40 8.547 12.01 8.00 12.60 12.77 6.21 22.37 16.69

Table 4.3: Performance of WDR models on LMO dataset. All the results are measured in %. All
activations are quantized to 8 bits. “WCR” is the weight compression ratio. “b8f2h4” represents the
module-based MPQ plan to quantize the backbone to 8 bits, FPN to 2 bits, and head to 4 bits. “MP”
means the MPQ plan given by HAWQ, and “LF” means excluding the last layer from quantization. All
the models are quantized using the naive quantization strategy. Objects marked “*” are symmetric objects.

Table 4.3 shows the performance of quantized WDR models on the LMO dataset. Since LMO has 8 object
types and SwissCube only has one type of object, it is reasonable to find that the pre-trained network only
achieves 37.56% overall ADI-0.1d. In the current settings, HAWQ’s MPQ plan works significantly better
than the module-based one. The module-based MPQ plan only gains 0.31% improvement after taking the
last layer out of quantization, which is still much smaller than the HAWQ’s MPQ plan. However, neither
of these plans works better than a simple 8-bit quantization. One possible reason is that the learning rate
decreases too much at the end of the training, hindering models from learning. As shown in Figure 4.8,
the accuracy fluctuates a lot at the beginning of training and nearly stops increasing in the last half of
training, so the performance increase in the first few epochs plays a crucial part in the final ADI-0.1d
value. Further experiments can keep the initial learning rate for longer epochs before reducing it.

23

CHAPTER 4 – EXPERIMENTS

2 4 6 8 10 12
Epoch

5

10

15

20

25

30

AD
I-0

.1
d(

%
)

HAWQ-4.1x Modular-b8f2h4 Modular-b8f2h4-LF 8bits

Figure 4.8: Learning curves of quantized WDR models on LMO dataset. “Modular-b8f2h4” means the
module-based MPQ plan that quantizes the backbone to 8 bits, FPN to 2 bits, and head to 4 bits. “LF”
means taking the last layer out of quantization.

ZebraPose trains one model for each object, so it performs better than WDR on the LMO dataset. We
demonstrate the performance of quantized ZebraPose models in Table 4.4. Here we only compare two
MPQ plans. Module-based MPQ plan works better than HAWQ’s plan, with a minor improvement of
0.23% among all objects. By fixing the last layer and quantizing the rest, it can achieve an additional
0.69% increase. The last row of the table shows the performance of layerwise quantization, which will be
discussed in the next section.

Policy WCR Overall ape can cat driller duck eggbox* glue* holepuncher
Baseline 1.0 76.93 57.9 95.0 60.6 94.8 64.5 70.9 88.7 83.0

b8d4 4.6 71.35 54.49 93.95 57.24 91.10 44.72 67.46 85.88 75.95
b8d4-LF 4.6 72.04 54.92 93.95 57.24 91.85 43.28 68.51 87.51 79.09

MP 4.6 71.12 53.20 93.95 56.89 91.43 44.00 67.19 85.88 76.45
MP-L 4.6 72.54 57.34 93.53 56.28 91.10 55.28 65.17 86.70 74.88

Table 4.4: Performance of ZebraPose models on LMO dataset. All the results are measured in %. The
activations are all quantized to 16 bits. WCR is the weight compression ratio. “b8d4” represents the
module-based MPQ plan to quantize the backbone to 8 bits, and the decoder to 4 bits. “MP” means
HAWQ’s MPQ plan, and “LF” means excluding the last layer from quantization. Strategies ending with
“L” stands for layerwise quantization, while others are using naive quantization. Objects marked with “*”
are symmetric objects.

4.3 Multi-Stage Quantization
We first show the multi-stage quantization of WDR models on the SwissCube dataset in Table 4.5. Our
layerwise quantization works best on HAWQ’s MPQ plan, achieving 79.45% ADI-0.1d, much higher than
the naive quantization. If we apply layerwise quantization in the reverse order, namely quantizing layers
based on perturbations Ω in the ascending order, the performance is still better, but it is less than the original
layerwise quantization. Compared with naive quantization using the “b8f2h4” plan, modular quantization
(“b8f2h4 modular” in the table) yields an ADI-0.1d increase of 5.78%. By changing the quantization bits
of activations from 8 bits to 16 bits, there can be an additional 0.53% improvement. Although applying
layerwise quantization on the module-based MPQ plan can also improve the performance, it does not

24

CHAPTER 4 – EXPERIMENTS

show more advantages than modular quantization.

Quantization Policy Weight Compression Ratio ADI-0.1d(%)
Baseline 1.0 78.95
b8f2h4 4.1 70.21

mixed precision 4.1 72.29
b8f2h4 modular 4.1 75.99
b8f2h4 layerwise 4.1 75.83

b8f2h4 modular (16 bits activation) 4.1 76.52
reverse layerwise 4.1 78.57

layerwise 4.1 79.45

Table 4.5: Comparison between naive quantization and multi-stage quantization of WDR models on
SwissCube dataset. Unless specified, the activations are all quantized to 8 bits. “b8f2h4” represents the
module-based MPQ plan to quantize the backbone to 8 bits, FPN to 2 bits, and head to 4 bits. “mixed
precision” means the MPQ plan given by HAWQ. “Baseline”, “b8f2h4” and “mixed precision” plans are
using naive quantization, while the others use either modular or layerwise quantization.

We plot their learning curves in Figure 4.9. Among all quantization strategies, layerwise quantization
using HAWQ’s MPQ plan is the most stable one. When using reversed layerwise quantization, the
model’s performance will fluctuate in the middle of training, suggesting that some layers introduce a large
perturbation to the model that is difficult to recover in a few epochs. This is consistent with what we
have analyzed before. Regarding the quantized models using modular quantization, the one with 8 bits
activation suffers from performance drop and fluctuation during training and recovers at the end. After
using 16 bits activation, the fluctuation is less severe and the ADI-0.1d is easier to recover.

One interesting observation is that layerwise quantization using the module-based MPQ plan faces
the largest performance degradation. Although it performs better than naive quantization, it shows
no superiority over modular quantization, which seems unreasonable. There might exist a better way
to select the order of quantization, for example, based on a modified version of perturbation Ω′

i =

Tr(Hi)∥rbii − wi∥α2 with a hyperparameter α to balance the focus between average Hessian trace and
quantization error. In addition, the iterations and the learning rate for each quantization stage can be
adjusted so that sensitive layers can be quantized for longer iterations and a smaller learning rate to recover
the performance. These will leave as future work.

5 10 15 20 25 30
Epoch

55

60

65

70

75

80

AD
I-0

.1
d(

%
)

Fine-tuning

HAWQ-Layerwise
HAWQ-Reverse Layerwise

Modular-Layerwise

5 10 15 20 25 30
Epoch

55

60

65

70

75

80

AD
I-0

.1
d(

%
)

Fine-tuning

Modular (8 bits activation)
Modular (16 bits activation)

Figure 4.9: Learning curves of multi-stage quantization of WDR models on SwissCube dataset. Left:
layerwise quantization. Right: modular quantization that quantizes a module at each stage.

We show in Table 4.6 the performance of layerwise quantization on WDR models with the LMO dataset.
Similar to the previous table, layerwise quantization performs better than its reversed version. However,

25

CHAPTER 4 – EXPERIMENTS

none of them works better than quantizing the whole network at once. Their learning curves are illustrated
in Figure 4.10. Different from Figure 4.9, the model’s performance fluctuates hugely during the whole
training process. We think that 12 epochs are insufficient for layerwise quantization to converge. Future
experiments can set more training epochs to make layerwise quantization recover the model performance.

Policy WCR Overall ape can cat driller duck eggbox* glue* holepuncher
Baseline 1.0 37.56 14.36 53.85 25.27 59.80 31.41 32.09 59.69 23.97

MP 4.1 27.02 13.33 39.11 11.20 41.52 20.82 26.64 49.94 13.63
MP-RL 4.1 23.80 13.16 35.38 15.59 32.13 18.99 18.89 43.08 13.14
MP-L 4.1 26.08 10.51 38.94 12.3 32.95 9.62 38.64 32.34 33.31

Table 4.6: Comparison between naive quantization and multi-stage quantization of WDR models on LMO
dataset. All the results are measured in %. The activations are all quantized to 8 bits. WCR is the weight
compression ratio. “L” stands for layerwise quantization, “RL” stands for reverse layerwise quantization.
“MP” means HAWQ’s MPQ plan. “Baseline” and “MP” plans are using naive quantization. Objects
marked with “*” are symmetric objects.

2 4 6 8 10 12
Epoch

5

10

15

20

25

AD
I-0

.1
d(

%
)

Fine-tuning

HAWQ-Layerwise HAWQ-Reverse Layerwise

Figure 4.10: Learning curves of layerwise quantization of WDR models on LMO dataset.

Based on the above findings, we only conduct layerwise quantization on ZebraPose models and report
their performance in Table 4.4. We find that layerwise quantization can improve the overall performance
of 1.32%, achieving the highest one among all quantized ZebraPose models. However, the performance
change of each object varies a lot. For example, object “duck” gets the largest improvement of 11.28%,
while object “eggbox” receives a decrease of 2.02%. Their learning curves in Figure 4.11 reveal that
fluctuations introduced by layerwise quantization seem to help models of hard objects to find better
solutions and improve their performance. But since the learning rate in naive quantization decreases
hugely at the end of quantization, it might also be possible that the current learning rate scheduler for
naive quantization is not well defined for these models to recover the performance.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Iterations(k)

30

40

50

60

70

AD
I-0

.1
d(

%
)

Fine-tuning

Duck-Layerwise
Duck

Eggbox-Layerwise
Eggbox

Figure 4.11: Learning curves of WDR models using different quantization strategies on LMO dataset.

26

CHAPTER 5

CONCLUSION

In this project, we explore network quantization for 6D pose estimation models. Initial studies suggest
that the backbone of the network is more sensitive to other modules. We then develop a module-based
MPQ accordingly. Further analysis of HAWQ’s MPQ plan reveals that the beginning and ending layers
are vulnerable to quantization and should not be quantized too much. To stabilize the quantization process,
we propose a multi-stage quantization to quantize part of the network in each stage and fine-tune it after
all layers are quantized. The order of quantization is based on HAWQ’s perturbation Ω. Experiment
results show that multi-stage quantization can bring more performance to the quantized models in most
cases. However, we are also aware that there is still room to improve current quantization algorithms.

As we discussed in Section 4, there are several directions for future work. Here are some additional
interesting topics to be discovered:

• Apply HAWQ’s MPQ plan to LSQ [26]. HAWQ only uses a simple linear quantizer and does not
learn its parameters, whereas LSQ makes them learnable. We think the combination of the two will
be more powerful to obtain a good-performing quantized model.

• Develop a smoother computation graph. Since quantization itself will introduce large parameter
perturbation due to STE [29], the training process is not smooth and full of fluctuations. A smoother
alternative for STE could be introduced to alleviate this issue, for example, G-STE in [10].

We hope this project could be beneficial and provide some insights to others who work on the same topic.

27

REFERENCES

[1] E. Marchand, H. Uchiyama and F. Spindler, ‘Pose estimation for augmented reality: A hands-on
survey,’ IEEE transactions on visualization and computer graphics, vol. 22, no. 12, pp. 2633–2651,
2015.

[2] G. Du, K. Wang, S. Lian and K. Zhao, ‘Vision-based robotic grasping from object localization,
object pose estimation to grasp estimation for parallel grippers: A review,’ Artificial Intelligence
Review, vol. 54, no. 3, pp. 1677–1734, 2021.

[3] S. Wang, S. Wang, B. Jiao et al., ‘Ca-spacenet: Counterfactual analysis for 6d pose estimation in
space,’ 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022.

[4] Y. Hu, S. Speierer, W. Jakob, P. Fua and M. Salzmann, ‘Wide-Depth-Range 6D Object Pose
Estimation in Space,’ en, 2021, pp. 15 870–15 879. (visited on 10th May 2022).

[5] T. Chen, T. Moreau, Z. Jiang et al., ‘{Tvm}: An automated {end-to-end} optimizing compiler for
deep learning,’ in 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 2018, pp. 578–594.

[6] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen and Y. Zou, ‘Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients,’ CoRR, vol. abs/1606.06160, 2016.

[7] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan and K. Gopalakrishnan, ‘Pact:
Parameterized clipping activation for quantized neural networks,’ arXiv preprint arXiv:1805.06085,
2018.

[8] D. Zhang, J. Yang, D. Ye and G. Hua, ‘Lq-nets: Learned quantization for highly accurate and
compact deep neural networks,’ in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 365–382.

[9] M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos and T. Blankevoort, ‘Up or down? adaptive
rounding for post-training quantization,’ in International Conference on Machine Learning, PMLR,
2020, pp. 7197–7206.

[10] Z. Liu, K.-T. Cheng, D. Huang, E. P. Xing and Z. Shen, ‘Nonuniform-to-Uniform Quantization:
Towards Accurate Quantization via Generalized Straight-Through Estimation,’ en, 2022, pp. 4942–
4952. (visited on 15th Nov. 2022).

[11] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney and K. Keutzer, ‘A survey of quantization
methods for efficient neural network inference,’ in Low-Power Computer Vision, Chapman and
Hall/CRC, pp. 291–326.

[12] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, ‘Feature pyramid networks
for object detection,’ in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2117–2125.

[13] L.-C. Chen, G. Papandreou, F. Schroff and H. Adam, ‘Rethinking atrous convolution for semantic
image segmentation,’ arXiv preprint arXiv:1706.05587, 2017.

[14] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney and K. Keutzer, ‘HAWQ: Hessian AWare Quantiza-
tion of Neural Networks With Mixed-Precision,’ 2019, pp. 293–302. (visited on 25th Jul. 2022).

28

[15] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. W. Mahoney and K. Keutzer, ‘HAWQ-V2: Hessian
Aware trace-Weighted Quantization of Neural Networks,’ in Advances in Neural Information
Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 18 518–18 529. (visited on 23rd Aug.
2022).

[16] Z. Yao, Z. Dong, Z. Zheng et al., ‘HAWQ-V3: Dyadic Neural Network Quantization,’ en, in
Proceedings of the 38th International Conference on Machine Learning, ISSN: 2640-3498, PMLR,
Jul. 2021, pp. 11 875–11 886. (visited on 25th Jul. 2022).

[17] Y. Su, M. Saleh, T. Fetzer et al., ‘ZebraPose: Coarse To Fine Surface Encoding for 6DoF Object
Pose Estimation,’ en, 2022, pp. 6738–6748. (visited on 25th Jul. 2022).

[18] S. Peng, Y. Liu, Q. Huang, X. Zhou and H. Bao, ‘Pvnet: Pixel-wise voting network for 6dof pose
estimation,’ in CVPR, 2019.

[19] Y. Hu, J. Hugonot, P. Fua and M. Salzmann, ‘Segmentation-Driven 6D Object Pose Estimation,’
2019, pp. 3385–3394. (visited on 10th May 2022).

[20] R. L. Haugaard and A. G. Buch, ‘SurfEmb: Dense and Continuous Correspondence Distributions
for Object Pose Estimation With Learnt Surface Embeddings,’ en, 2022, pp. 6749–6758. (visited
on 25th Jul. 2022).

[21] Y. Xiang, T. Schmidt, V. Narayanan and D. Fox, ‘Posecnn: A convolutional neural network for 6d
object pose estimation in cluttered scenes,’ 2018.

[22] Y. Di, F. Manhardt, G. Wang, X. Ji, N. Navab and F. Tombari, ‘SO-Pose: Exploiting Self-Occlusion
for Direct 6D Pose Estimation,’ en, 2021, pp. 12 396–12 405. (visited on 23rd Aug. 2022).

[23] Y. Hu, P. Fua, W. Wang and M. Salzmann, ‘Single-Stage 6D Object Pose Estimation,’ 2020,
pp. 2930–2939. (visited on 10th May 2022).

[24] M. Courbariaux, Y. Bengio and J.-P. David, ‘Binaryconnect: Training deep neural networks with
binary weights during propagations,’ Advances in neural information processing systems, vol. 28,
2015.

[25] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio, ‘Binarized neural networks:
Training deep neural networks with weights and activations constrained to+ 1 or-1,’ arXiv preprint
arXiv:1602.02830, 2016.

[26] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy and D. S. Modha, ‘Learned step size
quantization,’ in International Conference on Learning Representations, 2020.

[27] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort and N. Kwak, ‘Lsq+: Improving low-bit quantization
through learnable offsets and better initialization,’ in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 696–697.

[28] L. Wang, X. Dong, Y. Wang, L. Liu, W. An and Y. Guo, ‘Learnable Lookup Table for Neural
Network Quantization,’ en, 2022, pp. 12 423–12 433. (visited on 15th Nov. 2022).

[29] Y. Bengio, N. Léonard and A. Courville, ‘Estimating or propagating gradients through stochastic
neurons for conditional computation,’ arXiv preprint arXiv:1308.3432, 2013.

[30] Z. Aojun, Y. Anbang, G. Yiwen, X. Lin and C. Yurong, ‘Incremental network quantization:
Towards lossless cnns with low-precision weights,’ in International Conference on Learning
Representations,ICLR2017, 2017.

[31] Y. Li, X. Dong and W. Wang, ‘Additive powers-of-two quantization: An efficient non-uniform
discretization for neural networks,’ in International Conference on Learning Representations, 2020.

[32] K. Wang, Z. Liu, Y. Lin, J. Lin and S. Han, ‘HAQ: Hardware-Aware Automated Quantization With
Mixed Precision,’ 2019, pp. 8612–8620. (visited on 18th Dec. 2022).

[33] J. Redmon and A. Farhadi, ‘Yolov3: An incremental improvement,’ arXiv, 2018.
[34] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, ‘Focal loss for dense object detection,’ in

Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
[35] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,’ in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

29

[36] B. Jacob, S. Kligys, B. Chen et al., ‘Quantization and training of neural networks for efficient
integer-arithmetic-only inference,’ in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 2704–2713.

[37] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton and C. Rother, ‘Learning 6d object
pose estimation using 3d object coordinates,’ in European conference on computer vision, Springer,
2014, pp. 536–551.

[38] H. Avron and S. Toledo, ‘Randomized algorithms for estimating the trace of an implicit symmetric
positive semi-definite matrix,’ Journal of the ACM (JACM), vol. 58, no. 2, pp. 1–34, 2011.

[39] M. Van Baalen, C. Louizos, M. Nagel et al., ‘Bayesian bits: Unifying quantization and pruning,’
Advances in neural information processing systems, vol. 33, pp. 5741–5752, 2020.

[40] S. Hinterstoisser, V. Lepetit, S. Ilic et al., ‘Model based training, detection and pose estimation
of texture-less 3d objects in heavily cluttered scenes,’ in Asian conference on computer vision,
Springer, 2012, pp. 548–562.

[41] M. Denninger, M. Sundermeyer, D. Winkelbauer et al., ‘Blenderproc: Reducing the reality gap
with photorealistic rendering,’ in International Conference on Robotics: Sciene and Systems, RSS
2020, 2020.

30

	Acknowledgements
	Abstract
	Introduction
	Related Works
	6D Pose Estimation
	Dual-stage Pose Estimation
	Single-stage Pose Estimation

	Network Quantization
	Uniform and Non-Uniform Quantization
	QAT and PTQ
	Mixed-Precision Quantization

	Problem Statement and Methods
	6D Pose Estimation
	Preliminaries
	WDR and CA-SpaceNet
	ZebraPose

	Quantization
	Preliminaries
	Module-based Mixed-Precision Quantization
	Mixed-Precision Quantization in HAWQ
	Multi-Stage Quantization

	Experiments
	Experiment Setup
	Dataset
	Training Setup
	Evaluation Metrics

	Mixed-Precision Quantization
	Analysis of HAWQ MPQ Plans
	Performance on SwissCube
	Performance on LMO

	Multi-Stage Quantization

	Conclusion
	References

